Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (11): 1935-1943.doi: 10.3724/SP.J.1006.2013.01935
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
XIAO Yong-Gui1,LIU Jian-Jun2,XIA Xian-Chun1,CHEN Xin-Min1,Matthew REYNOLDS3,HE Zhong-Hu1,4,*
[1]Rebetzke G J, Condon A G, Richards R A, Farquhar G D. Selection for reduced carbon-isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Sci, 2002, 42: 739–745[2]Botwright T L, Condon A G, Rebetzke G J, Richards R A. Field evaluation of early vigour for genetic improvement of grain yield in wheat. Aust J Agric Res, 2002, 53: 1137–1145[3]Rebetzke G J, Botwright T L, Moore C S, Richards R A, Condon A G. Genotypic variation in specific leaf area for genetic improvement of early vigour in wheat. Field Crops Res, 2004, 88: 179–189[4]Ryan J. Crop nutrients for sustainable agricultural production in the drought stressed Mediterranean region. J Agric Sci Technol, 2008, 10: 295–306[5]López-Castañeda C, Richards C, Richards R A, Farquhar G D. Variation in early vigor between wheat and barley. Crop Sci, 1995, 35: 472–479[6]López-Castaóeda C, Richards R A. Variation in temperate cereals in rainfed environments: III. Water use and water-use efficiency. Field Crops Res, 1994, 39: 85–98[7]Rebetzke G J, Richards R A. Genetic improvement of early vigour in wheat. Aust J Agric Res, 1999, 50: 291–301[8]Zhang G Y, Guo Y, Chen S L, Chen S Y. RFLP tagging of a salt tolerance gene in rice. Plant Sci, 1995, 110: 227–234[9]Prasad S R, Bagali P G, Hittalmani S, Shashidhar H E. Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Curr Sci, 2000, 78: 162–164[10]Lin H X, Zhu M Z, Yano M, Gao J P, Liang Z W, Su W A, Hu X H, Ren Z H, Chao D Y. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet, 2004, 108: 253–260[11]Ellis R P, Forster B P, Gordon D C, Handley L L, Keith R P, Lawrence P, Meyer R, Powell W, Robinson D, Scrimgeour C M, Young G, Thomas W T. Phenotype genotype associations for yield and salt tolerance in a barley mapping population segregating for two dwarfing genes. J Exp Bot, 2002, 53: 1163–1176[12]Mano Y, Takeda K. Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica, 1997, 94: 263–272[13]Xue D, Huang Y Z, Zhang X Q, Wei K, Westcott S, Li C, Chen M, Zhang G, Lance R. Identification of QTLs associated with salinity tolerance at late growth stage in barley. Euphytica, 2009, 169: 187–196[14]Genc Y, Oldach K, Verbyla A P, Lott G, Hassan M, Tester M, Wallwork H, McDonald G K. Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet, 2010, 121: 877–894[15]Spielmeyer W, Hyles J, Joaquim P, Azanza F, Bonnett D, Ellis M E, Moore C, Richards R A. A QTL on chromosome 6A in bread wheat (Triticum aestivum) is association with longer coleoptiles, grater seedling vigour and final plan height. Theor Appl Genet, 2007, 115: 59–66[16]Botwright T L, Rebetzke G J, Condon A G, Richards R A. Influence of the gibberellin-sensitive Rht8 dwarfing gene on leaf epidermal cell dimensions and early vigour in wheat (Triticum aestivum L.). Ann Bot, 2005, 95: 631–639[17]Richards R A, Lukacs Z. Seedling vigour in wheat-sources of variation for genetic and agronomic improvement. Aust J Agric Res, 2002, 53: 41–50[18]Prasad B, Carver B F, Stone M L, Babar M A, Raun W R, Klatt A R. Genetic analysis of indirect selection for winter wheat grain yield using spectral reflectance indices. Crop Sci, 2007, 47: 1416–1425[19]Mullan D J, Reynolds M P. Quantifying genetic effects of ground cover on soil water evaporation using digital imaging. Funct Plant Biol, 2010, 37: 703–712[20]Wang G-Q(王桂琴), Zheng L-M(郑丽敏), Zhu H(朱虹), Liang Z-X(梁振兴), Liao S-H(廖树华). Application of image processing technology in wheat canopy leaf area index measuring. J Triticeae Crops (麦类作物学报), 2004, 24(4): 108–112 (in Chinese with English abstract) [21]Preussa C P, Huanga C Y, Louhaichib M, Ogbonnayab F C. Genetic variation in the early vigour of spring bread wheat under phosphate stress as characterised through digital charting. Field Crops Res, 2012, 127: 71–78[22]Crossa J, Burgueño J, Dreisigacker S, Vargas M, Herrera-Foessel S A, Lillemo M, Singh R P, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch J H, Ortiz R. Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics, 2007, 177: 1889–1913[23]Wang G, Leonard J M, Ross A S, Peterson C J, Zemetra R S, Campbell K G, Riera-Lizarazu O. Identification of genetic factors controlling kernel hardness and related traits in a recombinant inbred population derived from a soft 3 ‘extra-soft’ wheat (Triticum aestivum L.) cross. Theor Appl Genet, 2012, 124: 207–221[24]Yang J, Sears R G, Gill B S, Paulsen G M. Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica, 2002, 126: 275–282[25]Ren Y-Z(任永哲), Xu Y-H(徐艳花), Gui X-W(贵祥卫), Wang S-P(王素平), Ding J-P(丁锦平), Zhang Q-C(张庆琛), Ma Y-S(马原松), Pei D-L(裴冬丽). QTLs analysis of wheat seedling traits under salt stress. Sci Agric Sin (中国农业科学), 2012, 45(14): 2793–2800 (in Chinese with English abstract)[26]Heidari B, Sayed-Tabatabaei B E, Saeidi G, Kearsey M, Suenaga K. Mapping QTL for grain yield, yield components, and spike features in a doubled haploid population of bread wheat. Genome, 2011, 54: 517–527[27]Maccaferri M, Sanguineti M C, Demontis A, El-Ahmed A, Garcia del Moral L, Maalouf F, Nachit M, Nserallah N, Ouabbou H, Rhouma S, Royo C, Villegas D, Tuberosa R. Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot, 2011, 62: 409–438[28]Wang Y, Sun X, Zhao Y, Kong F, Guo Y, Zhang G, Pu Y, Wu K, Li S. Enrichment of a common wheat genetic map and QTL mapping for fatty acid content in grain. Plant Sci, 2011, 181: 65–75[29]Mir R R, Kumar N, Jaiswal V, Girdharwal N, Prasad M, Balyan H S, Gupta P K. Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping. Mol Breed, 2012, 29: 963–972[30]Kobayashi F, Takumi S, Handa H. Identification of quantitative trait loci for ABA responsiveness at the seedling stage associated with ABA-regulated gene expression in common wheat. Theor Appl Genet, 2010, 121: 629–641[31]Marone D, Laido G, Gadaleta A, Colasuonno P, Ficco D B M, Giancaspro A, Giove S, Panio G, Russo M A, De Vita P, Cattivelli L, Papa R. A high-density consensus map of A and B wheat genomes. Theor Appl Genet, 2012, 125: 1619–1638[32]Nik M M, Babaeian M, Tavassoli A. Effect of seed size and genotype on germination characteristic and seed nutrient content of wheat. Sci Res Essays, 2011, 6: 2019–2025[33]Hallauer A R, Miranda J B. Quantitative Genetics in Maize Breeding. 2nd edn. Ames: Iowa State University Press, Ames. 1988, pp 380–420 |
[1] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[2] | GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214. |
[3] | MA Juan, CAO Yan-Yong, LI Hui-Yong. Genome-wide association study of ear cob diameter in maize [J]. Acta Agronomica Sinica, 2021, 47(7): 1228-1238. |
[4] | CHEN Can, NONG Bao-Xuan, XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting, YANG Xing-Hai. Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi [J]. Acta Agronomica Sinica, 2021, 47(6): 1114-1123. |
[5] | JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404. |
[6] | LEI Wei, WANG Rui-Li, WANG Liu-Yan, YUAN Fang, MENG Li-Jiao, XING Ming-Li, XU Lu, TANG Zhang-Lin, LI Jia-Na, CUI Cui, ZHOU Qing-Yuan. Genome-wide association study of seed density and its related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(11): 2099-2110. |
[7] | ZHANG Ping-Ping,YAO Jin-Bao,WANG Hua-Dun,SONG Gui-Cheng,JIANG Peng,ZHANG Peng,MA Hong-Xiang. Soft wheat quality traits in Jiangsu province and their relationship with cookie making quality [J]. Acta Agronomica Sinica, 2020, 46(4): 491-502. |
[8] | ZOU Wei-Wei,LU Xue-Li,WANG Li,XUE Da-Wei,ZENG Da-Li,LI Zhi-Xin. Potassium uptake and genome-wide association analysis of rice under different nitrogen levels [J]. Acta Agronomica Sinica, 2019, 45(8): 1189-1199. |
[9] | Di JIN,Dong-Zhi WANG,Huan-Xue WANG,Run-Zhi LI,Shu-Lin CHEN,Wen-Long YANG,Ai-Min ZHANG,Dong-Cheng LIU,Ke-Hui ZHAN. Fine mapping and candidate gene analysis of awn inhibiting gene B2 in common wheat [J]. Acta Agronomica Sinica, 2019, 45(6): 807-817. |
[10] | LI Xiu-Shi,WU Xun,WU Wen-Qiang,LIU Peng-Fei,GUO Xiang-Yang,WANG An-Gui,ZHU Yun-Fang,CHEN Ze-Hui. Excavation of main candidate genome regions in Suwan germplasm improvement process of maize [J]. Acta Agronomica Sinica, 2019, 45(4): 568-577. |
[11] | Fang-Ping YANG,Jin-Dong LIU,Ying GUO,Ao-Lin JIA,Wei-E WEN,Kai-Xiang CHAO,Ling WU,Wei-Yun YUE,Ya-Chao DONG,Xian-Chun XIA. QTL mapping of adult-plant resistance to stripe rust in wheat variety holdfast [J]. Acta Agronomica Sinica, 2019, 45(12): 1832-1840. |
[12] | ZHAI Jun-Peng,LI Hai-Xia,BI Hui-Hui,ZHOU Si-Yuan,LUO Xiao-Yan,CHEN Shu-Lin,CHENG Xi-Yong,XU Hai-Xia. Genome-wide association study for main agronomic traits in common wheat [J]. Acta Agronomica Sinica, 2019, 45(10): 1488-1502. |
[13] | Jian-Bo HE,Fang-Dong LIU,Guang-Nan XING,Wu-Bin WANG,Tuan-Jie ZHAO,Rong-Zhan GUAN,Jun-Yi GAI. Characterization and Analytical Programs of the Restricted Two-stage Multi- locus Genome-wide Association Analysis [J]. Acta Agronomica Sinica, 2018, 44(9): 1274-1289. |
[14] | Da-Yong WEI,Yi-Xin CUI,Jia-Qin MEI,Qing-Lin TANG,Jia-Na LI,Wei QIAN. Genome-wide Association Study on Seed Oil Content in Rapeseed and Construction of Integration System for Oil Content Loci [J]. Acta Agronomica Sinica, 2018, 44(9): 1311-1319. |
[15] | Run-Miao TIAN, Xue-Hai ZHANG, Ji-Hua TANG, Guang-Hong BAI, Zhi-Yuan FU. Genome-wide Association Studies of Seed Germination Related Traits in Maize [J]. Acta Agronomica Sinica, 2018, 44(05): 672-685. |
|