[1]潘瑞炽, 董愚得. 植物生理学. 北京: 高等教育出版社, 1995. pp 77–79
Pan R Z, Dong Y D. Plant Physiology. Beijing: Higher Education Press, 1995. pp 77–79 (in Chinese)
[2]Krol M, Spangfort M D, Huner N P A, Oquist G, Gustafsson P, Jansson S. Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll b-less barley mutant. Plant Physiol, 1995, 107: 873–883
[3]Falbel T G, Meehl J B, Staehelin L A. Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis. Plant Physiol, 1996, 112: 821–832
[4]Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M. Mutations in the Arabidopsis gene IMMUTANTS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell, 1999, 11: 57–68
[5]胡忠, 彭丽萍, 蔡永华. 一个黄绿色的水稻细胞核突变体. 遗传学报, 1981, 8: 256–261
Hu Z, Peng L P, Cai Y H. A yellow-green nucleus mutant of rice. Acta Genet Sin, 1981, 8: 256–261 (in Chinese with English abstract)
[6]Zhao Y, Du L F, Yang S H, Li S C, Zhang Y Z. Chloroplast composition and structure differences in a chlorophyll-reduced mutant of oilseed rape seedlings. Acta Bot Sin, 2001, 43: 877–880
[7]Nagata N, Tanaka R, Satoh S, Tanaka A. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of prochlorococcus species. Plant Cell, 2005, 17: 233–240
[8]Beale S I. Green genes gleaned. Trends Plant Sci, 2005, 10: 309–312
[9]Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463–472
[10]Zhang H T, Li J J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325–337
[11]Wang P R, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J. Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant Physiol, 2010, 153: 994–1003
[12]Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Peak N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122–133
[13]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40
[14]Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805–818
[15]Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol, 1987,148, 350–382
[16]McCouch S R, Kochert G, Yu Z H, Wang Y Z, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76: 815–829
[17]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597–607
[18]Tanaka R, Tanaka A. Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol, 2007, 58: 321–346
[19]Markwell J P, Thornber J P, Boggs R T. Higher plant chloroplasts: evidence that all the chlorophyll exists as chlorophyll-protein complexes. Proc Natl Acad Sci USA, 1979, 76: 1233–1235
[20]Liu W Z, Fu Y P, Hu G C, Si H M, Zhu L, Wu C, Sun Z X. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta, 2007, 226: 785–795
[21]Espineda C E, Linford, A S, Devine D, Brusslan J A. The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA, 1999, 96: 10507–10511
[22]Rüdiger W. Biosynthesis of chlorophyll b and the chlorophyll cycle. Photosynth Res, 2002, 74: 187–193
[23]Oster U, Tanaka R, Tanaka A, Rüdiger W. Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J, 2000, 21: 305–310
[24]Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362–1375
[25]Meguro M, Ito H, Takabayashi A, Tanaka R, Tanaka A. Identification of the 7-hydroxymethyl chlorophyll a reductase of the chlorophyll cycle in Arabidopsis. Plant Cell, 2011, 23: 3442–3453
[26]Oster U, Bauer C E, Rüdiger W. Characterization of chlorophyll a and bacteriochlorophyll a synthases by heterologous expression in Escherichia coli. J Biol Chem, 1997, 272: 9671–9676
[27]Soll J, Schultz G, Rüdiger W, Benz J. Hydrogenation of geranylgeraniol: two pathways exist in spinach chloroplasts. Plant Physiol, 1983, 71: 849–854
[28]Schmid H C, Oster U, Kögel J, Lenz S, Rüdiger W. Cloning and characterisation of chlorophyll synthase from Avena sativa. Biol Chem, 2001, 382: 903–911
[29] Oster U, Rüdiger W. The G4 gene of Arabidopsis thaliana encodes a chlorophyll synthase of etiolated plants. Bot Acta, 1997, 110: 420–423
[30]吴自明, 张欣, 万建民. 水稻黄绿叶基因的克隆及应用. 生命科学, 2007, 19: 614–615
Wu Z M, Zhang X, Wan J M. Cloning and application of yellow-green leaf gene in rice. Chin Bull Life Sci, 2007, 19: 614–615 (in Chinese with English abstract) |