Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (04): 636-643.doi: 10.3724/SP.J.1006.2014.00636

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Expression Analysis of Copper and Zinc Superoxide Dismutase (Cu/Zn-SOD) Gene from Brassica campestris L.

ZENG Xiu-Cun1,2,LIU Zi-Gang2,SHI Peng-Hui2,XU Yao-Zhao1,SUN Jia3,FANG Yan4,YANG Gang2,WU Jun-Yan2,KONG De-Jing2,SUN Wan-Cang2,*   

  1. 1 College of Agronomy and Biotechnology, Hexi University, Zhangye 734000, China; 2 The College of Agronomy Gansu Agricultural University / Gansu Engineering Research Center of Rapeseed, Lanzhou 730070, China; 3 Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A8, Canada; 4 Research and Testing Center of Gansu Agricultural University, Lanzhou 730070, China
  • Received:2013-07-07 Revised:2013-11-24 Online:2014-04-12 Published:2014-01-16
  • Contact: 孙万仓, E-mail: 18293121851@163.com

Abstract:

Superoxide Dismutase (SOD) is a key enzyme eliminating reactive oxygen species (ROS), and the copper and zinc superoxide dismutase (Cu/Zn-SOD) is the most important active oxygen scavenger in SOD family, which can improve plant tolerance to environmental stresses. The cDNA of Brassica campestris L. cultivar Longyou 7 was cloned by RT-PCR, using the primers designed according to the published crucifer Cu/Zn-SOD cDNA sequences. The sequence of Cu/Zn-SOD from B. campestris L. was 459 bp, encoding a predicted protein of 152 amino acid residues. Bioinformatics analysis showed that amino sequence similarity with Brassica napus was 99%, and the predicted Cu/Zn-SOD protein was a hydrophilic protein without signal-peptide as well as transmembrane region. It contained specific sequence characteristics and conserved domain of copper and zinc superoxide dismutase (Cu/Zn-SOD) superfamily. The expression analysis of Cu/Zn-SOD gene using semi-quantitative RT-PCR and results of SOD activity in response to lower temperature showed that the Cu/Zn-SOD was a differential expressed gene induced by lower temperature. Results of separating low-temperature-induced proteins from Brassica campestris L. cultivar Longyou 6 by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry further showed that Cu/Zn-SOD was a stress-responsed gene, whose expression was induced by lower temperature.

Key words: Winter rape (Brassica compestris L.), Cu/Zn-SOD gene cloning, Lower temperature, Expression analysis, Activity of SOD, Low-temperature-induced protein

[1]孙万仓, 马卫国, 雷建民, 刘秦, 杨仁义, 武军艳, 王学芳, 叶剑, 曾军, 张亚宏, 康艳丽, 郭秀娟, 魏文惠, 杨杰, 蒲媛媛, 曾潮武, 刘红霞. 冬油菜在西北旱寒区的适应性和北移的可行性研究. 中国农业科学, 2007, 40: 2716–2726



Sun W C, Ma W G, Lei J M, Liu Q, Yang R Y, Wu J Y, Wang X F, Ye J, Zeng J, Zhang Y H, Kang Y L, Guo X J, Wei W H, Yang J, Pu Y Y, Zeng C W, Liu H X. Study on adaptation and introduction possibility of winter rapeseed to dry and cold areas in northwest China. Sci Agric Sin, 2007, 40: 2716–2726 (in Chinese with English abstract)



[2]姜海杨, 孙万仓, 曾秀存, 方彦, 陈姣荣, 史鹏辉, 赵彩霞, 何丽. 播期对北方白菜型冬油菜生长发育及产量的影响. 中国油料作物学报, 2012, 34: 620–626



Jiang H Y, Sun W C, Zeng X C, Fang Y, Chen J R, Shi P H, Zhao C X, He L. Effect of sowing date on Brassica rapa growth and yield in northern China. Chin J Oil Crop Sci, 2012, 34: 620–626 (in Chinese with English abstract)



[3]Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plant. J Exp Bot, 2002, 53: 1331–1341



[4]Allen R D, Webb R P, Schake S A. Use of transgenic plants to study antioxidant defenses. Free Radic Biol Med, 1997, 23: 473–479



[5]郭丽红, 吴晓岚, 龚明. 谷胱甘肽还原酶和超氧化物歧化酶在玉米幼苗热激诱导的交叉适应中的作用. 植物生理学通讯, 2005, 41: 429–432



Guo L H, Wu X L, Gong M. Roles of glutathione reductase and superoxide dismutase in heat-shock-induced cross adaptation in maize seedlings. Plant Physiol Commun, 2005, 41: 429–432 (in Chinese with English abstract)



[6]Lawrence V G, Nicole T B, Wu G H, Luo X M, Liu X J, Michael L G, Alan M H. Superoxide dismutase: an all-purpose gene for agri-biotechnology. Mol Breed, 2009, 24: 103–115



[7]Asada K, Kanematsu S, Okada S, Hayakana T. Phylogenic distribution of three types of superoxide dismutase in organisms and cell organelles. In: Bannister J V, Hao H, eds. Chemical and Biochemical Aspects of Superoxide Dismutase, 1980. pp 128–135



[8]冯昌军, 罗新义, 沙伟, 王凤国. 低温胁迫对苜蓿品种幼苗SOD、POD活性和脯氨酸含量的影响. 草业科学, 2005, 22(6): 29–32



Feng C J, Luo X Y, Sha W, Wang F G.. Effect of low temperature stress on SOD, POD activity and proline content of alfalfa. Pratac Sci, 2005, 22(6): 29–32 (in Chinese with English abstract)



[9]Song F N, Yang C P, Liu X M, Li G B. Effect of salt stress on activity of superoxide dismutase (SOD) in Ulmus pumila L. J For Res, 2006, 17: 13–16



[10]张怡, 罗晓芳, 沈应柏. 土壤逐渐干旱过程中刺槐新品种苗木抗氧化系统的动态变化. 浙江林学院学报, 2005, 22: 166–169



Zhang Y, Luo X F, Shen Y B. Dynamic change s of anti-oxidation system in new cultvars of Robinia pseudoacacia under gradual drought stress of soil. J Zhejiang For Coll, 2005, 22: 166–169 (in Chinese with English abstract)



[11]Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez J A. Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot, 2011, 62: 2599–2613



[12]胡根海, 喻树迅, 范术丽, 宋美珍. 编码棉花胞质铜锌超氧物歧化酶基因的克隆与表达分析. 中国农业科学, 2007, 40: 1602–1609



Hu G H, Yu S X, Fan S L, Song M Z. Cloning and expressing of a gene encoding cytosolic copper/zinc superoxide dismutase in the upland cotton. Sci Agric Sin, 2007, 40: 1602–1609 (in Chinese with English abstract)



[13]Sumio K, Kozi A. Characteristic of amino acid sequences of chloroplast and cytoplast isozymes of Cu/Zn superoxide dismutase in spinach, rice and horsetail. Plant Cell Physiol, 1990, 31: 99–112



[14]Kernodle S P, Scandalios J G. A comparison of the structure and function of the highly homologous maize antioxidant Cu/Zn superoxide dismutase genes SOD4 and SOD4A. Genetics, 1996, 144: 317–328



[15]马旭俊, 朱大海. 植物超氧化物歧化(SOD)的研究进展. 遗传, 2003, 25: 225–231



Ma X J, Zhu D H. Functional roles of the plant superoxide dismutase. Hereditas, 2003, 25: 225–231 (in Chinese with English abstract)



[16]Michel P, Fathey S. Synthesis of freezing tolerance proteins in leaves, crown, and roots during cold acclimation of wheat. Plant Physiol, 1989, 89: 577–585



[17]王瑞刚, 陈少良, 刘力源, 郝志勇, 翁海娇, 李鹤, 杨爽, 段杉. 盐胁迫下3种杨树的抗氧化能力与耐盐性研究. 北京林业大学学报, 2005, 27(3): 46–52



Wang R G, Chen S L, Liu L Y, Hao Z Y, Weng H J, Li H, Yang S, Duan S. Genotypic differences in antioxidative ability and salt tolerance of three poplars under salt stress. J Beijing For Univ, 2005, 27(3): 46–52 (in Chinese with English abstract)



[18]Hon W C, Griffith M, Chong P, Yang D S C. Extraction and isolation of antifreeze proteins from winter rye (Secale cereale L.) leaves. Plant Physiol, 1994, 104: 971–980



[19]章慧慧, 励勤荣. 超氧化物歧化酶的研究和应用现状. 农产品加工(学刊), 2007, (8): 28–32



Zhang H H, Li Q R. Study on Superoxide Dismutase. Acad Period Farm Prod Proc, 2007, (8): 28–32 (in Chinese with English abstract)



[20]Tainer J A, Getzoff E D, Beem K M, Richardson J. Determination and Analysis of the 2A structure of Copper, Zinc Superoxide Dismutase. J Mol Biol, 1982, 160: 181–184



[21]纪砚耘, 化文平, 王喆之. 丹参铜锌超氧化物歧化酶(Cu/Zn-SOD)基因的克隆与生物信息学分析. 陕西师范大学学报(自然科学版), 2011, 39(3): 56–61



Ji Y Y, Hua W P, Wang Z Z. Cloning and bioinformatics analysis of Cu/Zn-SOD gene from Salvia miltiorrhiza Bunge. J Shaanxi Norm Univ (Nat Sci Edn), 2011, 39(3): 56–60 (in Chinese with English abstract)



[22]Ke S S. Effects of copper on the photosynthesis and oxidative metabolism of amaranthus tricolor seedlings. Agric Sci China, 2007, 6: 1182–1192



[23]McKersie B D, Murnaghan J, Jones K S, Bowley S R. Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol, 2000, 122: 1427–1438



[24]Mullineaux P M, Creissen G P. Glutathione reductase: regulation and role in oxidative stress. In: Scandalios J G, ed. Oxidative stress and the molecular biology of antioxidant defenses. New York: Cold Spring Harbor Laboratory Press, 1997. pp 667–713



[25]李玉坤, 王学敏, 高洪文, 仁爱琴, 王赞, 孙桂枝. 东方山羊豆Cu/Zn-SOD基因的克隆及表达分析. 遗传, 2012, 34: 95–101



Li Y K, Wang X M, Gao H W, Ren A Q, Wang Z, Sun G Z. Cloning and expression analysis of Cu/Zn-SOD gene from Galega orientalis L. Hereditas (Beijing), 2012, 34: 95–101 (in Chinese with English abstract)



[26]Mallick N, Mohn F H. Reactive oxygen species: response of algal cells. J Plant Physiol, 2000, 157: 183–193



[27]Knrzer O C, Durner J, Bger P. Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidative stress. Physiol Plant, 1996, 97: 388–396



[28]Xu J, Duan X G, Yang J, John R B, Zhang P. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiol, 2013, 161: 1517–1528



[29]Hu L X, Huang Z H, Liu S Q, Fu J M. Growth response and gene expression in antioxidant-related enzymes in two bermudagrass genotypes differing in salt tolerance. J Am Soc Hort Sci, 2012, 137: 134–143



[30]Kacaoka T, Deda K. Heat-elable COR(cold-Hegulated) proteins associated with freezing tolerance in epinacb. Plant Cell Physiol, 1992, 33: 1107–1114



[31]李生泉, 李锐, 范月仙. 棉苗抗冷性与低温诱导蛋白关系的研究. 棉花学报, 2006, 18: 43–46



Li S Q, Li R, Fan Y X. Study on the relation between chilling resistance and low-temperature-induced proteins in cotton seeding. Cotton Sci, 2006, 18: 43–46 (in Chinese with English abstract)



[32]Herouart D, M Van Montagu, D Inzé Redox-activated expression of the cytosolic copper/zinc superoxide dismutase gene in Nicotiana. Proc Natl Acad Sci USA, 1993, 90: 3108–3112



[33]Wu G, Wilen R W, Robertson A J, Gusta L V. Isolation, chromo-somal localization, and differential expression of mitochondrial manganese superoxide dismutase and chloroplastic copper/zinc superoxide dismutase genes in wheat. Plant Physiol, 1999, 120: 513–520



[34]杜秀敏, 殷文漩, 张慧, 赵彦修. 超氧化物歧化酶(SOD)研究进展. 中国生物工程杂志, 2003, 2(1): 48–50



Du X M, Yin W X, Zhang H, Zhao Y X. The researching progress of superoxide dismutase. J Chin Biotechnol, 2003, 2(1): 48–50 (in Chinese with English abstract)



[35]Alscher R G, Donahue J L, Cramer C L. Reactive oxygen species and antioxidants relationships in green cells. Physiol Plant, 1997, 100: 224–233

[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[3] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[4] JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649.
[5] YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415.
[6] HE Xiao, LIU Xing, XIN Zheng-Qi, XIE Hai-Yan, XIN Yu-Feng, WU Neng-Biao. Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate [J]. Acta Agronomica Sinica, 2021, 47(10): 1941-1952.
[7] LI Guo-Ji, ZHU Lin, CAO Jin-Shan, WANG You-Ning. Cloning and functional analysis of GmNRT1.2a and GmNRT1.2b in soybean [J]. Acta Agronomica Sinica, 2020, 46(7): 1025-1032.
[8] Jin-Feng ZHAO,Yan-Wei DU,Gao-Hong WANG,Yan-Fang LI,Gen-You ZHAO,Zhen-Hua WANG,Yu-Wen WANG,Ai-Li YU. Identification of PEPC genes from foxtail millet and its response to abiotic stress [J]. Acta Agronomica Sinica, 2020, 46(5): 700-711.
[9] LIANG Si-Wei,JIANG Hao-Liang,ZHAI Li-Hong,WAN Xiao-Rong,LI Xiao-Qin,JIANG Feng,SUN Wei. Genome-wide identification and expression analysis of HD-ZIP I subfamily genes in maize [J]. Acta Agronomica Sinica, 2020, 46(4): 532-543.
[10] Tong-Hong ZUO, He-Cui ZHANG, Qian-Ying LIU, Xiao-Ping LIAN, Qin-Qin XIE, Deng-Ke HU, Yi-Zhong ZHANG, Yu-Kui WANG, Xiao-Jing BAI, Li-Quan ZHU. Molecular cloning and expression analysis of BoGSTL21 in self-incompatibility Brasscia oleracea [J]. Acta Agronomica Sinica, 2020, 46(12): 1850-1861.
[11] WANG Yan-Hua,XIE Ling,YANG Bo,CAO Yan-Ru,LI Jia-Na. Flowering genes in oilseed rape: identification, characterization, evolutionary and expression analysis [J]. Acta Agronomica Sinica, 2019, 45(8): 1137-1145.
[12] Hong-Ju JIAN,Bo YANG,Yang-Yang LI,Hong YANG,Lie-Zhao LIU,Xin-Fu XU,Jia-Na LI. Identification and expression analysis of PEBP gene family in oilseed rape [J]. Acta Agronomica Sinica, 2019, 45(3): 354-364.
[13] Xiao-Hong ZHANG,Gen-Hai HU,Han-Tao WANG,Cong-Cong WANG,Heng-Ling WEI,Yuan-Zhi FU,Shu-Xun YU. Expression and promoter activity of GhTFL1a and GhTFL1c in Upland cotton [J]. Acta Agronomica Sinica, 2019, 45(3): 469-476.
[14] Pi-Biao SHI,Bing HE,Yue-Yue FEI,Jun WANG,Wei-Yi WANG,Fu-You WEI,Yuan-Da LYU,Min-Feng GU. Identification and expression analysis of GRF transcription factor family of Chenopodium quinoa [J]. Acta Agronomica Sinica, 2019, 45(12): 1841-1850.
[15] Huan TAN,Yu-Hui LIU,Li-Xia LI,Li WANG,Yuan-Ming LI,Jun-Lian ZHANG. Cloning and Functional Analysis of R2R3 MYB Genes Involved in Anthocyanin Biosynthesis in Potato Tuber [J]. Acta Agronomica Sinica, 2018, 44(7): 1021-1031.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!