Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (07): 1197-1204.doi: 10.3724/SP.J.1006.2014.01197

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Correlation of SSR Markers with Agronomic Traits in Peanut (Arachis hypogaea L.)

ZHOU Jin-Chao,YANG Xin-Lei,MU Guo-Jun,CUI Shun-Li,HOU Ming-Yu,CHEN Huan-Ying,LIU Li-Feng*   

  1. North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory of Crop Germplasm Resources of Hebei / Agricultural University of Hebei, Baoding 071001, China
  • Received:2013-11-05 Revised:2014-04-16 Online:2014-07-12 Published:2014-05-16
  • Contact: 刘立峰, E-mail: liulifeng@hebau.edu.cn, Tel: 0312-7528136 第一作者联系方式: E-mail: zhoujinchao0230@163.com

Abstract:

A Recombinant Inbred Line (RIL) population including 251 lines, derived from the cross between Silihong and Jinonghei 3 was used to study the correlations between SSR markers and agronomic traits at two locations of Baoding and Handan, Hebei with Pearson’s correlation and stepwise multiple linear regression analysis. The results showed that there were significant correlations (P≤0.05, P≤0.01) among 18 agronomic traits, with the higher correlations between pod weight per plant and seed weight per plant (r=0.970), as well as the height of main stem and length of first branches (r=0.918). There existed significant correlation between SSR marker and agronomic trait with a average of 2–6 markers correlated with each agronomic trait. Fourteen SSR markers were associated with 13 agronomic traits with explanined phenotypic variances of 5.2%–11.5%. All these laid a solid foundation for peanut conventional breeding and molecular marker-assisted breeding programs.

Key words: Peanut, Recombinant inbred line, Agronomic traits, SSR, Correlation

[1]方宣钧, 吴为人, 唐纪良. 作物DNA分子辅助育种. 北京: 北京科学出版社, 2002. pp 41–45



Fang X J, Wu W R, Tang J L. DNA Marker Assisted in Crop Breeding. Beijing:Beijing Science Press, 2002. pp 41–51 (in Chinese)



[2]As?´ns. M J. Present and future of quantitative trait locus analysis in plant breeding. Plant Breed, 2002, 121: 281–291



[3]Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed, 1996, 2: 225–238



[4]洪彦彬, 梁炫强, 陈小平, 刘海燕, 周桂元, 李少雄, 温世杰. 花生栽培种SSR遗传图谱的构建. 作物学报, 2009, 35: 395–402



Hong Y B, Liang X Q, Chen X P, Liu H J, Zhou G Y, Li S X, Wen S J. Construction of genetic linkage map in peanut (Arachis hypogaea L.) cultivars. Acta Agron Sin, 2009, 35: 395–402 (in Chinese with English abstract)



[5]彭文舫, 姜慧芳, 任小平, 吕建伟, 赵新燕, 黄莉. 花生AFLP遗传图谱构建及青枯病抗性QTL分析. 华北农学报, 2010, 25(6): 81–86



Peng W F, Jiang H F, Ren X P, Lü J W, Zhao X Y, Huang L. Construction of AFLP genetic linkage map and detection of QTLs for bacterial wilt resistance in peanut (Arachis hypogaea L.). Acta Agric Boreali-Sin, 2010, 6: 81–86 (in Chinese with English abstract)



[6]Khedikar Y P, Gowda M V C, Sarvamangala C, Patgar K V, Upadhyaya H D, Varshney R K. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet, 2010, 121: 971–984



[7]张新友. 栽培花生产量、品质和抗病性的遗传分析与QTL定位研究. 浙江大学硕士学位论文, 2011



Zhang X Y. Inheritance of Main Traits Related to Yield, Quality and Disease Resistance and Their QTLs Mapping in Peanut (Arachis hypogaea L). MS Thesis of Zhejiang University, Hangzhou, China, 2011 (in Chinese with English abstract)



[8]Chu Y, Wu C L, Holbrook C C, Tillman B L, Person G, Ozias-Akins P. Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome, 2011, 4: 110–117



[9]Gautami B, Pandey M K, Vadez V, Nigam S N, Ratnakumar P, Krishnamurthy L, Radhakrishnan T, Gowda M V C, Narasu M L, Hoisington D A, Knapp S J, Varshney R K. Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed, 2012, 30: 757–772



[10]张新友, 韩锁义, 徐静, 严玫, 刘华, 汤丰收, 董文召, 黄兵艳. 花生主要品质性状的QTLs 定位分析. 中国油料作物学报, 2012, 34: 311–315



Zhang X Y, Han S Y, Xu J, Yan M, Liu H, Tang F S, Dong W Z, Huang B Y. Identification of QTLs for important quality traits in cultivated peanut (Arachis hypogaea L.). Chin J of Oil Crop Sci, 2012, 34: 311–315 (in Chinese with English abstract)



[11]Sujay V, Gowda M V, Pandey M K, Bhat R S, Khedikar Y P, Nadaf H L, Gautami B, Sarvamangala C, Lingaraju S, Radhakrishan T, Knapp S J, Varshney P K. Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed, 2012, 30: 773–788



[12]Fonceka D, Tossim H A, Rivallan R, Vignes H, Faye I, Ndoye O, Moretzsohn M C, Bertioli D J, Glaszmann J C, Courtois B, Rami J F. Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol, 2012, 12: 26



[13]张博, 莫惠栋, 杜生明, 黄敏仁. 林木遗传图谱研究现状及发展趋势. 中国生物工程杂志, 2003, 23(4): 14–18



Zhang B, Mu H D, Du S M, Huang M R. Status quo and tendency in construction of forest frees genetic linkage maps. Chin J Biotechnol, 2003, 23(4): 14–18 (in Chinese with English abstract)



[14]徐云碧, 朱立煌. 分子数量遗传学. 北京: 中国农业出版社, 1994. pp 110–179



Xu Y B, Zhu L H. Molecular Quantitative Genetics. Beijing: China Agriculture Press, 1994. pp 110–179 (in Chinese)



[15]Wu J X, Jenkins J N, McCarty J C, Zhong M, Swindle M. AFLP marker associations with agronomic and fiber traits in cotton. Euphytica, 2007, 153: 153–163



[16]魏志刚, 杨传平, 潘华. 利用多元回归分析鉴定与白桦纤维长度性状相关的分子标记. 分子植物育种, 2006, 4: 835–840



Wei Z G, Yang C P, Pan H. Identification of molecular marker associated with birch fiber length trait by multiple regression analysis. Mol Plant Breed, 2006, 4: 835–840 (in Chinese with English abstract)



[17]陈静, 胡晓辉, 苗华荣, 崔凤高, 禹山林. CTAB法提取花生总DNA在SSR和SRAP中的扩增效果. 花生学报, 2008, 37(1): 29–31



Chen J, Hu X H, Miao H R, Cui F G, Yu S L. Genome DNA extracted with CTAB method and its use for SSR and SRAP. J Peanut Sci, 2008, 37(1): 29–31 (in Chinese with English abstract)



[18]崔顺立, 刘立峰, 陈焕英, 耿立格, 孟成生, 杨余. 河北省花生地方品种基于SSR标记的遗传多样性. 中国农业科学, 2009, 42: 3346–3353



Cui S L, Liu L F, Chen H Y, Geng L G, Meng C S, Yang Y. Genetic diversity of peanut landrace in hebei province revealed by SSR markers. Sci Agric Sin, 2009, 42: 3346–3353 (in Chinese with English abstract)



[19]姜慧芳, 段乃雄. 花生种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 18–74



Jiang H F, Duan N X. Descriptors and Data Standard for Peanut (Arachis spp.). Beijing: China Agriculture Press, 2006. pp 18–74 (in Chinese)



[20]Kraakman A T, Wageningen A J, Niks R E, Stam P. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics, 2004, 168: 435–446



[21]殷冬梅, 李栓柱, 崔党群. 花生主要农艺性状的相关性及聚类分析. 中国油料作物学报, 2010, 32: 212–216



Yin D M, Li S Z, Cui D Q. Agronomic character and cluster analysis of peanut cultivars. Chin J Oil Crop Sci, 2010, 32: 212–216 (in Chinese with English abstract)



[22]杨鑫雷, 周晓栋, 刘恒蔚, 王省芬, 吴立强, 李志坤, 张燕, 张桂寅, 马峙英. AFLP标记与棉花重要农艺性状的关联研究. 棉花学报, 2013, 25: 211–216



Yang X L, Zhou X D, Liu H W, Wang X F, Wu L Q, Li Z K, Zhang Y, Zhang G Y, Ma Z Y. AFLP marker association with important agronomic traits in cotton. Cotton Sci, 2013, 25: 211–216 (in Chinese with English abstract)

[1] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[2] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[3] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[4] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[5] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[6] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[7] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[8] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[9] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[10] GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723.
[11] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[12] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[13] ZHAO Jing, MENG Fan-Gang, YU De-Bin, QIU Qiang, ZHANG Ming-Hao, RAO De-Min, CONG Bo-Tao, ZHANG Wei, YAN Xiao-Yan. Response of agronomic traits and P/Fe utilization efficiency to P application with different P efficiency in soybean [J]. Acta Agronomica Sinica, 2021, 47(9): 1824-1833.
[14] HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840.
[15] ZHANG Wang, XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1481-1490.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!