Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (09): 1372-1383.doi: 10.3724/SP.J.1006.2015.01372

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Analysis and QTL Mapping of Isoflavone Contents and Its Components in Soybean

LIANG Hui-Zhen1, YU Yong-Liang1, YANG Hong-Qi1, XU Lan-Jie1, DONG Wei1, NIU Yong-Guang1, ZHANG Hai-Yang1, LIU Xue-Yi2, FANG Xuan-Jun3   

  1. 1 Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; 2 Industrial Crop Institute, Shanxi Academy of Agricultural Sciences, Fenyang 032200, China; 3 Hainan Provincial Institute of Tropical Agriculture Resources, Sanya 572025, China
  • Received:2015-03-03 Online:2015-09-12 Published:2015-09-12

Abstract: A set of 447 recombinant inbred lines (RILs) derived from the cross between cultivars Jingdou 23 (female parent) and Huibuzhi (semi-wild, male parent) was used to construct a new map. Isoflavone content and its components were quantitatively and qualitatively evaluated by using high performance liquid chromatography (HPLC). We analyzed inheritance and detected QTLs for isoflavone content and its components in soybean seeds using major gene plus polygene mixed inheritance analysis and WinQTLCart 2.5 composite interval mapping. The results showed that daidzin, daidzein, genistein, genistin, glycitin, and total isoflavone contents were controlled by four, four, two, three, two and two main-genes, respectively. However, polygene effects were not detected in the study. Forty-four quantitative trait loci (QTLs) for isoflavone contents and its components were mapped, including ten for daidzin, nine for genistein, four for daidzein, seven for glycitin, eight for genistin, and six for total isoflavone content. The stable QTLs related to daidzin, genistin, glycitin, isoflavone content were respectively detected to be located in the intervals of satt430-satt359, satt038-satt570, satt197-sat_128, and satt249-satt285 during two years, which could be used in marker-assisted selection (MAS) for soybean breeding.

Key words: Soybean, Isoflavone content, Genetic analysis, Quantitative trait loci

[1] Patel R P, Boersma B J, Crawford J H, Hogg N, Kirk M, Kalyanaraman B, Paeks D A, Barnes S, Darley-Usmar V. Antioxidant mechanisms of isoflavones in lipid systems: paradoxical effects of peroxyl radical scavenging. Free Radical Biol Med , 2001, 31: 1570-1581
[2] Arean S, Rappa C, Del Frate E, Cenci S, Villani C. A natural alternative to menopausal hormone replacement therapy. Phytoestrogens Minerva Ginecol, 2002, 54: 53-57
[3] Kritz-Silverstein D, Goodman-Gruen D L. Usual dietary isoflavone intake, bone mineral density, and bone metabolism in postmenopausal women. J Women’s Health Gend Based Med , 2002, 11: 69-78
[4] Atkinson C, Compston J E, Day N E, Owsett M, Bingham S A. The effects of phytoestrogen isoflavones on bone density in women: a double-blind, randomized, lacebo-controlled trial. Am J Clinic Nutr , 2004, 79: 326-333
[5] Lamartiniere C A, Cotroneo M S, Fritz W A, Wang J, Mentor- Marcel R, Elgavish A. Genistein chemoprevention: timing and mechanisms of action in murine mammary and prostate. J Nutr , 2002, 132: 552-558
[6] Liggins J, Mulligan A, Runswick S, Bingham S A. Daidzein and genistein content of cereals. Clinic Nutr , 2002, 56: 961-966
[7] Munro I C, Harwood M, Hlywka J J, Stephen A M, Doull J, Flamm W G, Adlercreutz H. Soy isoflavones: a safety review. Nutr Rev , 2003, 61: 1-33
[8] Ma D F, Qin L Q, Wang P Y, Katoh R. Soy isoflavone intake increases bone mineral density in the spine of menopausal women: Metaanalysis of randomized controlled trials. Clin Nutr , 2008, 27: 57-64
[9] Nagata C. Factors to consider in the association between soy isoflavone intake and breat cancer risk. J Epidemiol , 2010, 20: 83-89
[10] Kudou S, Fleury Y, Welti D, Magnolato D, Uchida T, Kitamura K, Okubo K. Malonyl isoflavone glycosides in soybean seeds ( Glycine max L. Merr.). Agric Biol Chem , 1991, 55: 2227-2233
[11] Li W D, Liang H Z, Lu W G, Wang S F, Yang Q C, Yang C Y, Liu Y F. Studies on the correlations between isoflavone contents in soybean seed and the eco-physiological factors. Agric Sci China , 2004, 3: 340-348
[12] Liang H Z, Li W D, Fang X J, Cao Y N, Wang H. Genetic analysis of embryo, cytoplasm and maternal effects and their environment interactions for isoflavone content in soybean [ Glycine max (L.) Merr.]. Agric Sci China , 2007, 6: 1051-1059
[13] Liang H Z, Li W D, Cao Y N, Wang H. Genetic analysis of combining abilities and heterosis for the contents of soybean isoflavone and its components among the soybean varieties [ Glycine max (L.) Merr.]. Agric Sci China , 2005, 4: 101-105
[14] Liang H Z, Yu Y L, Wang S F, Lian Y, Wang T F, Wei Y L, Gong P T, Liu X Y, Fang X J, Zhang M C. QTL mapping of isoflavone, oil and protein contents in soybean ( Glycine max L. Merr.). Agric Sci China , 2010, 9: 1108-1116
[15] Meksem K, Njiti V N, Banz W J, Iqbal M J, Kassem M M, Hyten D L, Yuang J, Winters T A, Lightfoot D A. Genomic regions that underlie soybean seed isoflavone content. J Biomed Biotechnol , 2001, 1: 38-44
[16] Kassem M A, Shultz J, Meksem K, Cho Y, Wood A J, Iqbal M J, Lightfoot D A. An updated ‘Essex’ by ‘Forrest’ linkage map and first composite interval map of QTL underlying six soybean traits. Theor Appl Genet , 2006, 113: 1015-1026
[17] Primomo V S, Poysa V, Ablett G R, Jackson C J, Gijzen M, Rajcan I. Mapping QTL for individual and total isoflavone content in soybean seeds. Crop Sci , 2005, 45: 2454-2464
[18] Gutierrez-Gonzale J J, Wu X L, Zhang J, Lee J D, Ellersieck M, Shannon J G, Yu O, Nguyen T H, Sleper A D. Genetic control of soybean seed isoflavone content: Importance of statistical model and epistasis in complex traits. Theor Appl Genet , 2009, 119: 1069-1083
[19] Gutierrez-Gonzale J J, Wu X, Gillman J, Lee J, Zhong R, Yu O, Shannon G, Ellersieck M, Nguyen H, Sleper D. Intricate environment-modulated genetic networks control isoflavone accumulation in soybean seeds. Plant Biol , 2010, 10: 105-120
[20] Gutierrez-Gonzale J J, Vuong D T, Zhong R, Yu O, Lee J, Shannon G, Ellersieck M, Nguyen T H, Sleper A D. Major locus and other novel additive and epistatic loci involved in modulation of isoflavone concentration in soybean seeds. Theor Appl Genet , 2011, 123: 1375-1385
[21] Smallwood C. Detection of quantitative trait loci for marker- assisted selection of soybean isoflavone genistein. TN Res. Creat. Exch. 2012
[22] Zeng G, Li D, Han Y, Teng W, Wang J, Qiu L, Li W. Identification of QTL underlying isoflavone contents in soybean seeds among multiple environments. Theor Appl Genet , 2009, 118: 1455-1463
[23] Yoshikawa T, Okumoto Y, Ogata D, Sayama T, Teraishi M, Terai M, Toda T, Yamada K, Yagasaki K, Yamada N, Tsukiyama T, Yamada T, Tanisaka T. Transgressive segregation of isoflavone contents under the control of four QTLs in a cross between distantly related soybean varieties. Breed Sci , 2010, 60: 243-254
[24] Yang K, Moon J, Jeong N, Chun H, Kang S, Back K, Jeong S. Novel major quantitative trait loci regulating the content of isoflavone in soybean seeds. Genes Genom , 2011, 33: 685-692
[25] Zhang H J, Li J W, Liu Y J, Jiang W Z, Du X L, Li L, Li X W, Su L T, Wang Q Y, Wang Y. Quantitative trait loci analysis of individual and total isoflavone contents in soybean seeds. J Genet , 2014, 93: 331-338
[26] 张晶莹, 葛一楠, 孙君明, 韩粉霞, 于福宽, 闫淑荣, 杨华. 多环境条件下大豆异黄酮主要组分的QTL定位. 中国农业科学, 2012, 45: 3909-3920 Zhang J Y, Ge Y N, Sun J M, Han F X, Yu F K, Yan S R, Yang H. Identification of QTLs for major isoflavone components among multiple environments in soybean seeds. Sci Agric Sin , 2012, 45: 3909-3920 (in Chinese with English abstract)
[27] Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5 User Manual. Department of Statistics, North Carolina State University, Raleigh, NC, 2005
[28] 曹锡文, 刘兵, 章元明. 植物数量性状分离分析Windows 软件包SEA的研制. 南京农业大学学报, 2013, 36(6): 1-6 Cao X W, Liu B, Zhang Y M. SEA: a software package of segregation analysis of quantitative traits in plants. J Nanjing Agric Univ , 2013, 36(6): 1-6 (in Chinese with English abstract)
[29] Sun J M, Sun B L, Han F X, Yan S R, Yang H, Akio K. Rapid HPLC method for determination of 12 isoflavone components in soybean seeds. Agric Sci China , 2011, 10: 70-77
[30] 王珍. 大豆SSR遗传图谱构建及重要农艺性状QTL分析. 广西大学硕士学位论文, 广西南宁, 2004 Wang Z. Construction of Soybean SSR Based Map and QTL Analysis of Important Agronomic Traits. MS Thesis of Guangxi University, Nanning, China, 2004 (in Chinese with English abstract)
[31] 梁慧珍. 大豆子粒性状的遗传及QTL分析. 西北农林科技大学博士学位论文, 陕西杨凌, 2006 Liang H Z. Genetic Analysis and QTL Mapping of Seed Traits in Soybean [ Glycine max (L.) Merr]. PhD Dissertation of Northwest A&F University. Yangling, China, 2006 (in Chinese with English abstract)
[32] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-14
[33] Chiari L, Naoe L K, Piovesan N D, José I C, Cruz C D, Moreira M A, Barros E G. Genetic parameters relating isoflavone and protein content in soybean seeds. Euphytica , 2004, 138: 55-60.
[34] Hagiwara W E, Onish K, Takamure I, Sano Y. Transgressive segregation due to linked QTLs for grain characteristics of rice. Euphytica , 2006, 150: 27-35
[35] Panthee D R, Kwanyuen P, Sams C E, West D R, Saxton A M, Pantalone V R. Quantitative trait loci for β-conglycinin (7S) and glycinin (11S) fractions of soybean storage protein. J Am Oil Chem Soc , 2004, 81: 1558-9331
[36] 王英, 程立锐, 冷建田, 吴存祥, 侯文胜, 韩天富. 开花后不同光周期条件下大豆农艺性状和品质性状的QTL分析. 作物学报, 2010, 36: 1092-1099 Wang Y, Cheng L R, Leng J T, Wu C X, Hou W S, Han T F. QTL mapping of agronomic and quality traits in soybean under different post-flowering photoperiods. Acta Agron Sin , 2010, 36: 1092-1099 (in Chinese with English abstract)
[37] Jansen R C, Van Ooijien J M, Stam P, Lister C, Dean C. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet , 1995, 91: 33-37
[38] Kassem A, Meksem K, Iqbal M, Njiti V, Banz W, Winters T, Wood A, Lightfoot D. Definition of soybean genomic regions that control seed phytoestrogen amounts. J Biomed Biotechnol , 2004, 1: 52-60
[39] 王春娥. 我国大豆资源豆腐豆乳得率和异黄酮含量的遗传变异及两类性状的QTL分析. 南京农业大学博士学位论文, 江苏南京, 2008 Wang C E. Genetic Variability of Toftu and Soymilk Output and Isoflavone Content in Soybean Germplasm from China and Qtl Mapping of the Two Kinds of Traits. PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2008 (in Chinese with English abstract)
[40] 王金社, 李海旺, 赵团结, 盖钧镒. 重组自交家系群体4对主基因加多基因混合遗传模型分离分析方法的建立. 作物学报, 2010, 36: 191-201 Wang J S, Li H W, Zhao T J, Gai J Y. Establishment of segregation analysis of mixed inheritance model with four major genes plus polygenes in recombinant inbred lines population. Acta Agron Sin , 2010, 36: 191-201 (in Chinese with English abstract)
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[5] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[6] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[7] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[8] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[9] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[10] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[11] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[12] ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279.
[13] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[14] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[15] YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!