Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (08): 1128-1138.doi: 10.3724/SP.J.1006.2017.01128

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Variations and Drought Tolerance of SNAC Genes in Common Maize Inbred Lines of China

LIGuo-Jun1,3,**,MAYi-Wen2,3,**,XUDan-Yang3,WUYong-Bo3,SONGJie3,WANGNan3,HAOZhuan-Fang3,*,ZHAOJuan1,*   

  1. 1 College of Agronomy, Shanxi Agricultural University, Taigu 030801, China; 2 Tonghua Academy of Agricultural Sciences, Tonghua 135007, China; 3 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2016-11-29 Revised:2017-04-20 Online:2017-08-12 Published:2017-05-11
  • Contact: LI Guojun,E-mail:liguojun911@163.com,Tel:18734422015;Ma Wenyi,E-mail:mayiwen3070@163.com,Tel:13943529373
  • Supported by:

    ThisstudywassupportedbytheNationalNaturalScienceFoundationofChina(31661143010;31271735).

Abstract:

The coding regions and their upstream 800 bp promoter regions of SNAC genes (Sress-responsive NAM, ATAF1/2, CUC2) were sequenced in 16 maize inbred lines commonly used in China. Among 12 SNAC genes, genetic variations in promoter region were only identified in four SNAC genes, and more than 30 variations were identified in four SNAC genes, showing higher polymorphism in the four genes than other in SNAC genes. Although most of the SNAC genes were mainly SNP (Single nucleotide polymorphism) mutations, more insertion/deletion mutations were detected in ZmNAC031467 gene, reaching 63.3% of the total genetic variations. The PLACE software was used to predict three kinds of stress-tolerant binding elements in SNAC gene, but little effect was found to be related with the variations. Additionally,high nucleotide polymorphisms were identified in seven SNAC genes, especially with the highest π value of 0.00962 in ZmNAC030308, which suggested that they were greatly influenced by natural selection in the genetic drift. With the T-test, two mutations of ZmNAC070395 and ZmNAC080398 genes were associated with drought-tolerant traits,whichprovides references for further analysing the relationship between nucleotide variation in SNAC and drought tolerance traits.

Key words: 玉米, SNAC基因, 遗传变异, 耐旱性

[1]李月.棉花逆境胁迫应答Trihelix转录因子的鉴定及功能分析.石河子大学博士学位论文,新疆石河子,2013
LiY.TheIdentificationofTrihelixTranscriptionFactorandFunctionalAnalysisinResponsetoStressinCotton.Ph.D.DissertationofShiheziUniversity,Shihezi,China,2013(inChinesewithEnglishabstract)
[2]陈儒钢,巩振辉,逯明辉,李大伟,黄炜.植物抗逆反应中的转录因子网络研究进展.农业生物技术学报,2010,18(1):126–134
ChenRG,GongZH,LuMH,LiDW,HuangW.Researchadvancedofthetranscriptionfactorsnetworksrelatedtoplantadverseenvironmentalstress.JAgricBiotechnol,2010,18(1):126–134(inChinesewithEnglishabstract)
[3]康桂娟,曾日中,聂智毅,黎瑜,代龙军,段翠芳.植物NAC转录因子的研究进展.生物技术通报,2012,(11):21–26
KangGJ,ZengRZ,NieZY,LiY,DaiLJ,DuanCF.ResearchprogressofplantNACtranscriptionfactors.BiotechnolBull,2012,11:21–26(inChinesewithEnglishabstract)
[4]SouerE,HouwelingenVA,KloosD,MolJ,KoesR.Thenoapicalmeristemgeneofpetuniaisrequiredforpatternformationinembryosandflowersandisexpressedatmeristemandprimordialboundaries.Cell,1996,85:159–170
[5]AidaM,IshidaT,FukakiH,FujisawaH,TasakaM.GenesinvolvedinorganseparationinArabidopsis:ananalysisofthecup-shapedcotyledonmutant.PlantCell,1997,9:841–857
[6]TranLS,NakashimaK,SakumaY,SimpsonSD,FujitaY,MaruyamaK,FujitaM,SekiM,ShinozakiK,Yamaguchi-ShinozakiK.IsolationandfunctionalanalysisofArabidopsisstress-inducibleNACtranscriptionfactorsthatbindtoadrought-responsivecis-elementintheearlyresponsivetodehydrationstress1promoter.PlantCell,2004,16:2481–2498
[7]MitsudaN,HisaboriT,TakeyasuK,SatoMH.VOZ;isolationandcharacterizationofnovelvascularplanttranscriptionfactorswithaone-zincfingerfromArabidopsisthaliana.PlantCellPhysiol,2004,45:845–854
[8]FangYJ,YouJ,XieKB,XieWB,XiongLZ.Systematicsequenceanalysisandidentificationoftissue-specificorstress-responsivegenesofNACtranscriptionfactorfamilyinrice.MolGenetGenomics,2008,280:535–546
[9]ShenH,YinYB,ChenF,XuY,DixonRA.AbioinformaticanalysisofNACgenesforplantcellwalldevelopmentinrelationtolignocellulosicbioenergyproduction.BioEnergyRes,2009,2:217–232
[10]NuruzzamanM,ManimekalaiR,SharoniAM,SatohK,KondohH,OokaH,KikuchiS.Genome-wideanalysisofNACtranscriptionfactorfamilyinrice.Gene,2010,465:30–44
[11]NakashimaK,TakasakiH,MizoiJ,ShinozakiK,Yamaguchi-ShinozakiK.NACtranscriptionfactorsinplantabioticstressresponses.BiochimBiophysActa,2012,1819:97–103
[12]RiechmannJL,HeardJ,MartinG,ReuberL,JiangC,KeddieJ,AdamL,PinedaO,RatcliffeOJ,SamahaRR,CreelmanR,PilgrimM,BrounP,ZhangJZ,GhandehariD,ShermanBK,YuG.Arabidopsistranscriptionfactors:genome-widecomparativeanalysisamongeukaryotes.Science,2000,290:2105–2110
[13]LuM,YingS,ZhangDF,ShiYS,SongYC,WangTY,LiY.Amaizestress-responsiveNACtranscriptionfactor,ZmSNAC1,confersenhancedtolerancetodehydrationintransgenicArabidopsis.PlantCellRep,2012,31:1701–1711
[14]MaoHD,WangHW,LiuSX,LiZG,YangXH,YanJB,LiJS,PhanTranLS,QinF.AtransposableelementinaNACgeneisassociatedwithdroughttoleranceinmaizeseedlings.NatCommun,2015,6:8326
[15]LiuSS,HaoZF,WengJF,LiMS,ZhangDG,PanTG,ZhangSH,LiXH.Identificationoftwofunctionalmarkersassociatedwithdroughtresistanceinmaize.MolBreed,2015,35:1–10
[16]HaoZF,LiXH,SuZJ,XieCX,LiMS,LiangXL,WengJF,ZhangDG,LiL,ZhangSH.Aproposedselectioncriterionfordroughtresistanceacrossmultipleenvironmentsinmaize.BreedSci,2011,61:101–108
[17]张世煌.商业育种只需要两个杂种优势群.种子科技,2014,(7):7–8
ZhangSH.Onlyneedtwoheteroticgroupsincommercialbreeding.SeedScience&Technology,2014,(7):7–8(inChinese)
[18]MurrayMG,ThompsonWF.RapidisolationofhighmolecularweightplantDNA.NuclAcidsRes,1980,8:4321–4326
[19]LiL,MaYW,ZhangSH,HaoZF,LiXH.ZeamaysNACtranscriptionfactorfamilymembers:theirgenomiccharacteristicsandrelationshipwithdroughtstress.ResJBiotechnol,2015,1:63–77
[20]ZhaoY,ZhouYQ,JiangHY,LiXY,GanDF,PengXJ,ZhuSW,ChengBJ.Systematicanalysisofsequencesandexpressionpatternsofdrought-responsivemembersoftheHD-Zipgenefamilyinmaize.PLoSOne,2011,6:e28488
[21]NeiM,LiWH.Mathematicalmodelforstudyinggeneticvariationintermsofrestrictionendonucleases.ProcNatlAcadSciUSA,1979,10:5269–5273
[22]周琦,王文.DNA水平自然选择作用的检测.动物学研究,2004,25(1):73–80
ZhouQ,WangW.DetectingnaturalselectionattheDNAlevel.ZoolRes,2004,25(1):73–80(inChinesewithEnglishabstract)
[23]李伟,韩蕾,钱永强,孙振元.植物NAC转录因子的种类、特征及功能.应用与环境生物学报,2011,17:596–606
LiW,HanL,QianYQ,SunZY.CharacteristicsandfunctionsofNACtranscriptionfactorsinplants.ChinJApplEnvironBiol,2011,17:596–606(inChinesewithEnglishabstract)
[24]HuHH,DaiMQ,YaoJL,XiaoBZ,LiXH,ZhangQF,XiongLZ.OverexpressingaNAM,ATAF,andCUC(NAC)transcriptionfactorenhancesdroughtresistanceandsalttoleranceinrice.ProcNatlAcadSciUSA,2006,103:12987–12992
[25]KanedaT,TagaY,TakaiR,IwanoM,MatsuiH,TakayamaS,IsogaiA,CheF.ThetranscriptionfactorOsNAC4isakeypositiveregulatorofplanthypersensitivecelldeath.EMBOJ,2009,28:926–936
[26]NakayamaA,FukushimaS,GotoS,MatsushitaA,ShimonoM,SuganoS,JiangCJ,AkagiA,YamazakiM,InoueM,TakatsujiH.Genome-wideidentificationofWRKY45-regulatedgenesthatmediatebenzothiadiazole-induceddefenseresponsesinrice.BMCPlantBiol,2013,13:1–11
[27]SongSY,ChenY,ChenJ,DaiXY,ZhangWH.PhysiologicalmechanismsunderlyingOsNAC5-dependenttoleranceofriceplantstoabioticstress.Planta,2011,234:331–345
[28]OhnishiT,SugaharaS,YamadaT,KikuchiK,YoshibaY,HiranoHY,TsutsumiN.OsNAC6,amemberoftheNACgenefamily,isinducedbyvariousstressesinrice.GenesGenetSyst,2005,80:135–139
[29]HuHH,YouJ,FangYJ,ZhuXY,QiZY,XiongLZ.CharacterizationoftranscriotionfactorgeneSNAC2conferringcoldandsalttoleranceinrice.PlantMolBiol,2008,67:169–18
[30]FujitaM,FujitaY,MaruyamaK,SekiM,HiratsuK,Ohme-TakagiM,TranLS,Yamaguchi-ShinozakiK,ShinozakiK.Adehydration-inducedNACprotein,RD26,isinvolvedinanovelABA-dependentstress-signalingpathway.PlantJ,2004,39,863–876
[31]LuPL,ChenNZ,AnR,SuZ,QiBS,RenF,ChenJ,WangXC.Anoveldrought-induciblegene,ATAF1,encodesaNACfamilyproteinthatnegativelyregulatestheexpressionofstress-responsivegenesinArabidopsis.PlantMolBiol,2007,63:289–305
[32]WuJ,WangLF,WangSM.Comprehensiveanalysisanddiscoveryofdrought-relatedNACtranscriptionfactorsincommonbean.BMCPlantBiol,2016,16:193
[33]SekiM,NarusakaM,AbeH,KasugaM,Yamaguchi-ShinozakiK,CarninciP,HayashizakiY,ShinozakiK.Monitoringtheexpressionpatternof1300Arabidopsisgenesunderdroughtandcoldstressesbyusingafull-lengthcDNAmicroarray.PlantCell,2001,13:61–72
[34]FowlerS,ThomashowMF.ArabidopsistranscriptomeprofilingindicatesthatmultipleregulatorypathwaysareactivatedduringcoldacclimationinadditiontotheCBFcoldresponsepathway.PlantCell,2002,14:1675–1690
[35]MaruyamaK,SakumaY,KasugaM,ItoY,SekiM,GodaH,ShimadaY,YoshidaS,ShinozakiK,Yamaguchi-ShinozakiK.Identificationofcold-inducibledownstreamgenesoftheArabidopsisDREB1A/CBF3transcriptionalfactorusingtwomicroarraysystems.PlantJ,2004,38:982–993
[36]ShinozakiK,Yamaguchi-ShinozakiK.Genenetworksinvolvedindroughtstressresponseandtolerance.JExpBot,2007,58:221–227
[37]ChoiH,HongJ,HaJ,KangJ,KimSY.ABFs,afamilyofABA-responsiveelementbindingfactors.JBiolChem,2000,275:1723–1730
[38]UnoY,FurihataT,AbeH,YoshidaR,ShinozakiK,Yamaguchi-ShinozakiK.Arabidopsisbasicleucinezippertranscriptionfactorsinvolvedinanabscisicacid-dependentsignaltransductionpathwayunderdroughtandhigh-salinityconditions.ProcNatlAcadSciUSA,2000,97:11632–11637
[39]NakashimaK,TranLS,VanNguyenD,FujitaM,MaruyamaK,TodakaD,ItoY,HayashiN,ShinozakiK,Yamaguchi-ShinozakiK.FunctionalanalysisofaNAC-typetranscriptionfactorOsNAC6involvedinabioticandbioticstress-responsivegeneexpressioninrice.PlantJ,2007,51:617–630
[40]SakumaY,LiuQ,DubouzetJG,AbeH,ShinozakiK,Yamaguchi-ShinozakiK.DNA-bindingspecificityoftheERF/AP2domainofArabidopsisDREBs,transcriptionfactorsinvolvedindehydration-andcold-induciblegeneexpression.BiochemBiophysResCommun,2002,290:998–1009
[41]赵洪阳.水稻抗旱基因分子进化研究.华中农业大学硕士学位论文,湖北武汉,2012
ZhaoHY.MolecularEvolutionofDrought-ResistantGenesinRice.MSThesisofHuazhongAgriculturalUniversity,Wuhan,China,2012(inChinesewithEnglishabstract)
[42]HickmanR,HillC,PenfoldCA,BreezeE,BowdenL,MooreJD,ZhangP,JacksonA,CookeE,Bewicke-CopleyF,MeadA,BeynonJ,WildDL,DenbyKJ,OttS,Buchanan-WollastonV.AlocalregulatorynetworkaroundthreeNACtranscriptionfactorsinstressresponsesandsenescenceinArabidopsisleaves.PlantJ,2013,75:26–39
[43]BhattramakkiD,DolanM,HanafeyM,WinelandR,VaskeD,RegisterJC3rd,TingeySV,RafalskiA.Insertiondeletionpolymorphismsin3'regionsofmaizegenesoccurfrequentlyandcanbeusedashighlyinformativegeneticmarkers.PlantMolBiol,2002,48:539–547
[44]YangD,YangX,LiuJ,WangBH,LiuBL,WangYZ.PodshatteringresistanceassociatedwithdomesticationismediatedbyaNACgeneinsoybean.NatCommun,2014,5:3352

[1] WU Wen-Ming,CHEN Hong-Jian,WANG Shi-Ji,WEI Feng-Zhen,LI Jin Cai. Effects of Nitrogen Fertilization Application Regime on Dry Matter, Nitrogen Accumulation and Transportation in Summer Maize under Waterlogging at the Seedling Stage [J]. Acta Agron Sin, 2015, 41(08): 1246-1256.
[2] YAN Qing-Jiu,HUO Shi-Ping*,ZHANG Fang-Kui,ZHANG Xing-Duan,ZHANG Jian,XIANG Zhen-Fan,YU Zhi-Jiang,FENG Yun-Chao. Effects of Artificial Shaded-Humid Environment on Growth Characteristics in Different Maize Inbred Lines [J]. Acta Agron Sin, 2013, 39(12): 2253-2261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!