Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (2): 188-195.doi: 10.3724/SP.J.1006.2019.84055

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

A new method of synthesizing Brassica napus by crossing B. oleracea with the allohexaploid derived from hybrid between B. napus and B. rapa

Fang YUE1,Lei WANG1,Yan-Gui CHEN1,Xiao-Xia XIN3,Qin-Fei LI1,2,Jia-Qin MEI1,Zhi-Yong XIONG3,*(),Wei QIAN1,*()   

  1. 1 College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
    2 College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
    3 College of Life Sciences, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China
  • Received:2018-04-16 Accepted:2018-10-08 Online:2019-02-12 Published:2018-11-09
  • Contact: Zhi-Yong XIONG,Wei QIAN E-mail:xiongzy2003@aliyun.com;qianwei666@hotmail.com
  • Supported by:
    This study was supported by the National Basic Research Program of China (973 Program)(2015CB150201);the National Natural Science Foundation of China(31471173);and the Project of Chongqing Science and Technology Commission Grants(cstc2016shmszx80074)

Abstract:

It is an important way to improve Brassica napus (A nA nC nC n) try using its parental species. Here a hexaploid method was proposed to synthesize B. napus by crossing B. oleracea (C oC o) with the hexaploid derived from the interspecific hybridization between B. napus and B. rapa. The hexaploid (A rA rA nA nC nC n) was developed by crossing B. napus cv. ‘Zhongshuang 11’ with B. rapa cv. ‘SWU07’, and followed by chromosome doubling. And the hexaploid was crossed with various types of B. oleracea to develop new type B. napus. The hexaploid exhibited stable karyotype in three successive generations. There was no significant difference for seed setting rate between open-pollination and selfing-pollination in generations. The pollen fertility ranged from 94.6% to 98.8%. The average seed-setting rate was 5.47 and 7.93 seeds per pod for the open-pollination and selfing-pollination in three successive generations, respectively. The average crossability was 0.05, 0.04, and 0.05 seeds per pod in three successive crossing generations between the hexaploid and B. oleracea, respectively. There was no significant difference in pod setting rate and seed setting rate among the hybrids between the hexaploid and the diverse types of B. oleracea. A few seeds were obtained by crossing B. oleracea with hexaploid A rA rA nA nC nC n in the field, suggesting that the method of hexaploid is useful to introgress the genomic components of parental species into B. napus.

Key words: Brassica napus, Brassica rapa, Brassica oleracea, allohexaploid, crossability

Fig. 1

Breeding process for developing new type B. napus"

Table 1

SSR primers used in identifying hexaploid"

基因组
Genome
引物名称
Primer name
上游引物
Forward primer (5°-3°)
下游引物
Reverse primer (5°-3°)
A04 QW150 CGTTTTCGTAACACTCAAGC GTTGGTTCGTGGTTCCTTCT
A04 QW156 ATCCCAAAGAAACACGACA ATCCACCTCCCATCACATT
A07 SWUA1236 CTGATGTCCCCAGTACCAT CAACATTCCACAAGTGATCC
A07 SWUA1251 GATGCAACAAACCGTGACT AACCTCGCTATGGGAAGAC
C01 CB10277 ACAAATGCTTGAGTGATA TCTTCGTAAACTTGTTCTTGA
C09 SWUC664 CCTTGCAGCCATTCACTCTT AAACTAGGGTTTCCAGCCGT
C09 SWUC700 TGCCACTGTTTTGTTCTTGG CCGCTGTCTCCTCACTAACC

Fig. 2

Identification and characteristics of the synthesized hexaploid a: Hexaploid S0-2; b: New type B. napus; c: B. napus var. Zhongshuang 11; d: B. rapa SWU07; e: B. oleracea—the parent of the new type of B. napus; f and g display chromosome karyotype in generations S0 and S1 by FISH, respectively; h: One somatic cell from the hybrid between hexaploid and B. oleracea with chromosome pattern of 20 A-genomic and 18 C-genomic chromosomes by FISH (red signals represent chromosomes from C genome, blue signals is present chromosomes from A genome, white-CentBr1, green-CentBr2, Both CentBr1, and CentBr2 are the centromere repeat sequences, C-genome specific probe comes from BAC clone BNIH123L05 [28]); i: exhibits molecular patterns of the hybrid as compared with two parents (P1 means B. rapa SWU07, P2 means B. napus Zhongshuang 11, the primer is QW156); j and k show the pollen fertility of hexaploid and triploid, respectively (the full pollen with depth color means fertile pollen, others are infertile pollens); l and m show the different sizes of flowers and buds between hexaploid (right) and B. napus var. Zhongshuang 11 (left); n: Pollen of B. oleracea grown well on the stigma at 6 h after pollination."

Table 2

Seed setting investigation in each generation of hexaploid (mean±SD)"

六倍体世代
Generation
自交结实性
Seed setting of self
pollination (seeds pod-1)
天然结实性
Seed setting of open pollination (seeds pod-1)
S0 4.2±2.16 8.2±2.41
S1 5.9±3.02 6.3±2.84
S2 6.3±3.60 9.3±2.62

Table 3

Crossability of the hexaploid with B. oleracea"

杂交组合
Cross
授粉花蕾数
Bud number
pollinated
结角数
Pod number
结实数
Seed number
结角率
Pod setting rate
(mean±SD)
结实率
Seed setting rate
(mean±SD)
AAAACC × CC (正交)
S0 362 168 6 0.46±0.13 0.04±0.31
S1 2234 1009 50 0.45±0.28 0.05±0.26
S2 2290 908 49 0.40±0.36 0.05±0.29
CC × AAAACC (反交)
S0 105 50 3 0.48±0.19 0.06±0.25
S1 2166 1042 35 0.48±0.41 0.03±0.34
S2 391 143 8 0.37±0.27 0.06±0.28
[1] Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P, . Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953.
[2] Flannery M L, Mitchell F J, Coyne S, Kavanagh T A, Burke J I, Salamin N, Dowding P, Hodkinson T R . Plastid genome characterisation in Brassica and Brassicaceae using a new set of nine SSRs. Theor Appl Genet, 2006,113:1221-1231.
doi: 10.1007/s00122-006-0377-0 pmid: 16909279
[3] Nagaharu U . Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot, 1935: 389-452.
[4] Siemens J . Interspecific hybridisation between wild relatives and Brassica napus to introduce new resistance into the oilseed rape gene pool. Czech J Genet Plant, 2002,38:3-4.
[5] 周庆红, 周灿, 范淑英 . 远缘杂交在芸薹属作物育种中的应用研究进展. 北方园艺, 2015, ( 2):165-170.
doi: 10.11937/bfyy.201502047
Zhou Q H, Zhou C, Fan S Y . Research advance in application of distant hybridization on breeding of Brassica crops. Nor Hortic, 2015, ( 2):165-170 (in Chinese with English abstract).
doi: 10.11937/bfyy.201502047
[6] Mei J, Fu Y, Qian L, Xu X, Li J, Qian W . Effectively widening the gene pool of oilseed rape (Brassica napus L.) by using Chinese B. rapa in a ‘virtual allopolyploid’ approach. Plant Breed, 2011,130:333-337.
doi: 10.1111/j.1439-0523.2011.01850.x
[7] Qian W, Meng J, Li M, Frauen M, Sass O, Noack J, Jung C . Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed(B. napus L.), with emphasis on the evolution of Chinese rapeseed. Theor Appl Genet, 2006,113:49-54.
doi: 10.1007/s00122-006-0269-3 pmid: 16604336
[8] Mei J, Qian L, Disi J O, Yang X, Li Q, Li J, Frauen M, Cai D, Qian W . Identification of resistant sources against Sclerotinia sclerotiorum in Brassica species with emphasis on B. oleracea. Euphytica, 2011,177:393-399.
[9] Li Q F, Zhou Q H, Mei J Q, Zhang Y J, Li J N, Li Z Y, Ge X H, Xiong Z Y, Huang Y J, Qian W . Improvement of Brassica napus via interspecific hybridization between B. napus and B. oleracea. Mol Breed, 2014,34:1955-1963.
[10] 李勤菲, 钱伟, 贺亚军 . 甘蓝型油菜与甘蓝杂交的亲和性分析. 西南大学学报: 自然科学版, 2016,38(10):1-7.
doi: 10.13718/j.cnki.xdzk.2016.10.001
Li Q F, Qian W, He Y J . Crossability between Brassica napus and B. oleracea. J Southwest Univ (Nat Sci Edn), 2016,38(10):1-7 (in Chinese with English abstract).
doi: 10.13718/j.cnki.xdzk.2016.10.001
[11] Girke A, Schierholt A, Becker H C . Extending the rapeseed gene pool with resynthesized Brassica napus: II. Heterosis. Theor Appl Genet, 2012,124:1017-1026.
[12] Eickermann M, Ulber B, Vidal S . Resynthesized lines and cultivars ofBrassica napus L. provide sources of resistance to the cabbage stem weevil(Ceutorhynchus pallidactylus (Mrsh.)). B Entomol Res Ceutorhynchus pallidactylus, 2011,101:287-294.
[13] Fu D H, Qian W, Zou J, Meng J L . Genetic dissection of intersubgenomic heterosis in Brassica napus carrying genomic components of B. rapa. Euphytica, 2012,184:151-164.
doi: 10.1007/s10681-011-0533-8
[14] 冯午, 陈耀华 . 甘蓝与白菜种间杂交的双二倍体后代. 园艺学报, 1981,8:37-40.
Feng W, Chen Y H . Artificial amphidiploids obtained in an interspecific cross. Acta Hortic Sin, 1981,8:37-40 (in Chinese with English abstract).
[15] 文雁成, 鲁丽萍, 张书芬, 王建平, 朱家成, 何俊平, 赵磊, 曹金华 . 利用十字花科种间杂交创造甘蓝型油菜种质资源的研究. 河南农业科学, 2014,43:30-34.
doi: 10.3969/j.issn.1004-3268.2014.06.007
Wen Y C, Lu L P, Zhang S F, Wang J P, Zhu J C, He J P, Zhao L, Cao J H . Novel germplasm creation in Brassica napus by Cruciferous interspecific hybridization. J Henan Agric Sci, 2014,43:30-34 (in Chinese with English abstract).
doi: 10.3969/j.issn.1004-3268.2014.06.007
[16] 王爱凡, 康雷, 李鹏飞, 李再云 . 我国甘蓝型油菜远缘杂交和种质创新研究进展. 中国油料作物学报, 2016,38:691-698.
doi: 10.7505/j.issn.1007-9084.2016.05.021
Wang A F, Kang L, Li P F, Li Z Y . Review on new germplasm development in Brassica napus through wide hybridizations in China. Chin J Oil Crop Sci, 2016,38:691-698 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2016.05.021
[17] 张晓伟, 高睦枪, 原玉香, 耿建峰, 文雁成, 张书芬, 栗根义 . 人工合成甘蓝型油菜研究. 河南农业科学, 2001, ( 2):7-10.
doi: 10.3969/j.issn.1004-3268.2001.02.002
Zhang X W, Gao M Q, Yuan Y X, Geng J F, Wen Y C, Zhang S F, Li G Y . Studies on artificially synthesized B. napus L. J Henan Agric Sci, 2001, ( 2):7-10 (in Chinese with English abstract).
doi: 10.3969/j.issn.1004-3268.2001.02.002
[18] Ripley V L, Beversdorf W D . Development of self-incompatible Brassica napus:(I) introgression of S-alleles from Brassica oleracea through interspecific hybridization. Plant Breed, 2003,122:1-5.
[19] Li Q, Mei J, Zhang Y, Li J, Ge X, Li Z, Qian W . A large-scale introgression of genomic components of Brassica rapa into B. napus by the bridge of hexaploid derived from hybridization between B. napus and B. oleracea. Theor Appl Genet, 2013,126:2073-2080.
[20] Zhou Y, Scarth R . Microspore culture of hybrids between Brassica napus and B. campestris. Acta Bot Sin, 1995,37:848-855.
[21] Mei J, Liu Y, Wei D, Wittkop B, Ding Y, Li Q, Li J, Wan H, Li Z, Ge X, Frauen M, Snowdon R J, Qian W, Friedt W . Transfer of sclerotinia resistance from wild relative of Brassica oleracea into Brassica napus using a hexaploidy step. Theor Appl Genet, 2015,128:639-644.
[22] 姚行成, 葛贤宏, 李再云 . 甘蓝型油菜与Brassica maurorum的异源六倍体后代及BC2细胞学分析. 中国油料作物学报, 2012,34:16-20.
Yao X Y, Ge X H, Li Z Y . Cytology of Brassica allohexaploids and BC2 progenies from B. napus and B. Maurorum. Chin J Oil Crop Sci, 2012,34:16-20 (in Chinese with English abstract).
[23] Li Z, Liu H L, Luo P . Production and cytogeneric hybrids between Brassica napus and Orychophragmus violaceus. Theor Appl Genet, 1995,91:131-136.
[24] Xiong Z, Pires J C . Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics, 2011,187:37-49.
[25] 吴巧娟, 肖松华, 刘剑光, 狄佳春, 许乃银, 陈旭升, 殷剑美 . 棉花远缘杂交育种研究进展及发展对策. 棉花科学, 2006,28:3-6.
doi: 10.3969/j.issn.2095-3143.2006.05.001
Wu Q S, Xiao S H, Liu J G, Di J C, Xu N Y, Chen X S, Yin J M . A preliminary study on the interspecific hybridization of B. campestris × B. oleracea through ovary culture. Cotton Sci, 2006,28:3-6 (in Chinese with English abstract).
doi: 10.3969/j.issn.2095-3143.2006.05.001
[26] 蔡得田, 袁隆平, 卢兴桂 . 二十一世纪水稻育种新战略: II.利用远缘杂交和多倍体双重优势进行超级稻育种. 作物学报, 2001,27:110-116.
doi: 10.3321/j.issn:0496-3490.2001.01.019
Cai D T, Yuan L P, Lu X G . A new strategy of rice breeding in the 21st century: II. Searching a new path way of rice breeding by utilization of double het erosis of wide cross and poly ploidization. Acta Agron Sin, 2001,27:110-116 (in Chinese with English abstract).
doi: 10.3321/j.issn:0496-3490.2001.01.019
[27] 李辛雷, 陈发棣, 赵宏波 . 菊属植物远缘杂交亲和性研究. 园艺学报, 2008,35:257-262.
doi: 10.3321/j.issn:0513-353X.2008.02.016
Li X L, Chen F D, Zhao H B . Compatibility of interspecific cross in dendranthema genus. Acta Hortic Sin, 2008,35:257-262 (in Chinese with English abstract).
doi: 10.3321/j.issn:0513-353X.2008.02.016
[28] 吴江生, 石淑稳, 周永明, 刘后利 . 甘蓝型双低油菜品种华双3号的选育和研究. 华中农业大学学报, 1999,18:1-4.
doi: 10.3321/j.issn:1000-2421.1999.01.001
Wu J S, Shi S W, Zhou Y M, Liu H L . Breeding and studies of hua double 3 (Brassica napus L.). J Huazhong Agric Univ, 1999,18:1-4 (in Chinese with English abstract).
doi: 10.3321/j.issn:1000-2421.1999.01.001
[29] Udall J A, Quijada P A, Polewicz H, Vogelzang R, Osborn T C . Phenotypic effects of introgressing chinese winter and resynthesized Brassica napus L. germplasm into hybrid spring canola. Crop Sci, 2004,44:1990-1996.
doi: 10.2135/cropsci2004.1990
[30] Gómezcampo C . Biology of Brassica Coenospecies. Elsevier, 1999.
[31] Meng J L, Shi S W, Li G, Li Z Y, Qu X S . The production of yellow-seeded Brassica napus(AACC) through crossing interspecific hybrids of B. campestris(AA) and B. carinata (BBCC) with B. napus. Euphytica, 1998,103:329-333
[32] Rahman M H . Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breed, 2001,120:463-472.
[33] 殷家明, 陈树忠, 唐章林, 谌利, 李加纳 . 黄籽羽衣甘蓝和白菜型油菜杂交再合成甘蓝型油菜研究. 西南农业学报, 2004,17:149-151.
doi: 10.3969/j.issn.1001-4829.2004.02.004
Yin J M, Chen S Z, Tang Z L, Chen L, Li J N . Resynthesis of Brassica napus through interspecific hybridization between yellow-seeded B. oleracea var. acephala and B. campestris. J Southwest Agric Sci, 2004,17:149-151 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001-4829.2004.02.004
[34] 张国庆, 唐桂香, 周伟军 . 白菜型油菜和甘蓝杂交子房培养初步研究. 中国农业科学, 2003,36:1409-1413.
doi: 10.3321/j.issn:0578-1752.2003.11.032
Zhang G Q, Tang G X, Zhou W J . A preliminary study on the interspecific hybridization of B. campestris × B. oleracea through ovary culture. Sci Agric Sin, 2003,36:1409-1413 (in Chinese with English abstract).
doi: 10.3321/j.issn:0578-1752.2003.11.032
[35] 邢少辰, 周开达 . 特异同源多倍体水稻自交后代的遗传研究. 四川农业大学学报, 2000,18:308-310.
doi: 10.3969/j.issn.1000-2650.2000.04.006
Xing S C, Zhou D K . A genetic study on the yield characters of hybrid populations in naked barley. J Sichuan Agric Univ, 2000,18:308-310 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-2650.2000.04.006
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] ZHANG Yi-Zhong, ZENG Wen-Yi, DENG Lin-Qiong, ZHANG He-Cui, LIU Qian-Ying, ZUO Tong-Hong, XIE Qin-Qin, HU Deng-Ke, YUAN Chong-Mo, LIAN Xiao-Ping, ZHU Li-Quan. Codon usage bias analysis of S-locus genes SRK, SLG, and SP11/SCR in Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(5): 1152-1168.
[3] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[4] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[5] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[6] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[7] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[8] ZUO Xiang-Jun, FANG Peng-Peng, LI Jia-Na, QIAN Wei, MEI Jia-Qin. Characterization of aphid-resistance of a hairy wild Brassica oleracea taxa, B. incana [J]. Acta Agronomica Sinica, 2021, 47(6): 1109-1113.
[9] LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798.
[10] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
[11] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[12] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[13] TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426.
[14] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[15] WEI Li-Juan, SHEN Shu-Lin, HUANG Xiao-Hu, MA Guo-Qiang, WANG Xi-Tong, YANG Yi-Ling, LI Huan-Dong, WANG Shu-Xian, ZHU Mei-Chen, TANG Zhang-Lin, LU Kun, LI Jia-Na, QU Cun-Min. Genome-wide association analysis reveals zinc-tolerant loci of rapeseed at germination stage [J]. Acta Agronomica Sinica, 2021, 47(2): 262-274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!