Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (2): 175-187.doi: 10.3724/SP.J.1006.2019.84093
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
Cun-Min QU1,2,Guo-Qiang MA1,2,Mei-Chen ZHU1,2,Xiao-Hu HUANG1,2,Le-Dong JIA1,2,Shu-Xian WANG1,2,Hui-Yan ZHAO1,2,Xin-Fu XU1,2,Kun LU1,2,Jia-Na LI1,2,*(),Rui WANG1,2,*()
[1] | Panaullah G M, Alam T, Hossain M B, Loeppert R H, Lauren J G, Meisner C A, Ahmed Z U, Duxbury J M . Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant Soil, 2008,317:31. |
[2] |
Finnegan P M, Chen W . Arsenic toxicity: the effects on plant metabolism. Front Physiol, 2012,3:182.
doi: 10.3389/fphys.2012.00182 pmid: 22685440 |
[3] |
谭万能, 李志安, 邹碧 . 植物对重金属耐性的分子生态机理. 植物生态学报, 2006,30:703-712.
doi: 10.17521/cjpe.2006.0092 |
Tan W A, Li Z A, Zou B . Molecular mechanisms of plant tolerance to heavy metals. J Plant Ecol, 2006,30:703-712 (in Chinese with English abstract).
doi: 10.17521/cjpe.2006.0092 |
|
[4] |
Lindsay E R, Maathuis F J M . New molecular mechanisms to reduce arsenic in crops. Trends Plant Sci, 2017,22:1016-1026.
doi: 10.1016/j.tplants.2017.09.015 pmid: 29056439 |
[5] | Isayenkov S V, Maathuis F J M . The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett, 2008,582:1625-1628. |
[6] |
Xu W, Dai W, Yan H, Li S, Shen H, Chen Y, Xu H, Sun Y, He Z, Ma M . Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant, 2015,8:722-733.
doi: 10.1016/j.molp.2015.01.005 pmid: 25732589 |
[7] | Kamiya T, Tanaka M, Mitani N, Ma J F, Maeshima M, Fujiwara T . NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem, 2009,284:2114-2120. |
[8] |
Chen Y, Sun S K, Tang Z, Liu G, Moore K L, Maathuis F J M, Miller A J, McGrath S P, Zhao F J . The Nodulin 26-like intrinsic membrane protein OsNIP3;2 is involved in arsenite uptake by lateral roots in rice. J Exp Bot, 2017,68:3007-3016.
doi: 10.1093/jxb/erx165 pmid: 28505352 |
[9] | Sun S K, Chen Y, Che J, Noriyuki K, Tang Z, Miller A J, Ma J F, Zhao F J . Decreasing arsenic accumulation in rice by overexpressing OsNIP1;1 and OsNIP3; 3 through disrupting arsenite radial transport in roots. New Phytol, 2018, 15190. |
[10] |
Chao D Y, Chen Y, Chen J, Shi S, Chen Z, Wang C, Danku J M, Zhao F J, Salt D E . Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol, 2014,12:e1002009.
doi: 10.1371/journal.pbio.1002009 pmid: 4251824 |
[11] |
李洋, 于丽杰, 金晓霞 . 植物重金属胁迫耐受机制. 中国生物工程杂志, 2015, ( 9):94-104.
doi: 10.13523/j.cb.20150914 |
Li Y, Yu L J, Jin X X . Mechanism of heavy metal tolerance stress of plants. China Biotech, 2015, ( 9):94-104 (in Chinese with English abstract).
doi: 10.13523/j.cb.20150914 |
|
[12] |
Cojocaru P, Gusiatin Z M, Cretescu I . Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus). Environ Sci Poll Res, 2016,23:10693-10701.
doi: 10.1007/s11356-016-6176-5 pmid: 26884243 |
[13] | Gasic K, Korban S S . Expression of Arabidopsis phytochelatin synthase in Indian mustard(Brassica juncea) plants enhances tolerance for Cd and Zn. Planta, 2007,225:1277-1285. |
[14] | Marchiol L, Assolari S, Sacco P, Zerbi G . Phytoextraction of heavy metals by canola (Brassica napus) and radish(Raphanus sativus) grown on multicontaminated soil. Environl Poll, 2004,132:211. |
[15] |
Touiserkani T, Haddad R . Cadmium-induced stress and antioxidative responses in different Brassica napus cultivars. J Agric Sci Tech-IRAN, 2012,14:929-937.
doi: 10.1016/j.agee.2012.04.006 |
[16] |
宋俊英 . 芸薹属植物对砷胁迫的反应及其机理研究. 华中农业大学硕士学位论文,湖北武汉, 2010.
doi: 10.7666/d.y1805482 |
Song J Y . Responses of Brassica Species to Arsenic Stress and Their Mechanisms. PhD Dissertation of Huazhong Agriculture University, Hubei, Wuhan,China, 2010.
doi: 10.7666/d.y1805482 |
|
[17] |
张蕊, 邓文亚, 杨柳, 王亚萍, 肖芳枝, 禾健, 卢坤 . 盐胁迫下甘蓝型油菜发芽期下胚轴和根长的全基因组关联分析. 中国农业科学, 2017,50:15-27.
doi: 10.3864/j.issn.0578-1752.2017.01.002 |
Zhang R, Deng Y W, Yang L, Wang Y P, Xiao Y Z, He J, Lu K . Genome-wide association study of root length and hypocotyl length at germination stage under saline conditions in Brassica napus. Sci Agric Sin, 2017,50:15-27 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.01.002 |
|
[18] |
Munns R, James R A . Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant & Soil, 2003,253:201-218.
doi: 10.1023/A:1024553303144 |
[19] |
卢坤, 王腾岳, 徐新福, 唐章林, 曲存民, 贺斌, 梁颖, 李加纳 . 甘蓝型油菜结角高度与荚层厚度的全基因组关联分析. 作物学报, 2016,42:344-352.
doi: 10.3724/SP.J.1006.2016.000344 |
Lu K, Wang T Y, Xu X F, Tang Z L, Qu C M, He B, Liang Y, Li J N . Genome-wide association analysis of height of podding and thickness of pod canopy in Brassica napus. Acta Agron Sin, 2016,42:344-352 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.000344 |
|
[20] | Pritchard J K, Stephens M, Donnelly P . Inference of population structure using multilocus genotype data. Genetics, 2000,155:945. |
[21] |
Evanno G, Regnaut S, Goudet J . Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol, 2005,14:2611-2620.
doi: 10.1111/mec.2005.14.issue-8 |
[22] |
Hardy O, Vekemans X . SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes, 2002,2:618-620.
doi: 10.1046/j.1471-8286.2002.00305.x |
[23] |
Wang S B, Feng J Y, Ren W L, Huang B, Zhou L, Wen Y J, Zhang J, Dunwell J M, Xu S, Zhang Y M . Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci Rep, 2016,6:19444.
doi: 10.1038/srep19444 pmid: 4726296 |
[24] |
Tamba C L, Ni Y L, Zhang Y M . Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. PLoS Comput Biol, 2017,13:e1005357.
doi: 10.1371/journal.pcbi.1005357 pmid: 5308866 |
[25] | Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B , 72 others. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953. |
[26] |
Zhou Y, Xu D, Jia L, Huang X, Ma G, Wang S, Zhu M, Zhang A, Guan M, Lu K . Genome-wide identification and structural analysis of bZIP transcription factor genes in Brassica napus. Genes, 2017,8:288.
doi: 10.3390/genes8100288 pmid: 5664138 |
[27] |
Lu K, Li T, He J, Chang W, Zhang R, Liu M, Yu M, Fan Y, Ma J, Sun W . qPrimerDB: a thermodynamics-based gene-specific qPCR primer database for 147 organisms. Nucl Acids Res, 2018,46:D1229-D1236.
doi: 10.1093/nar/gkx725 pmid: 5753361 |
[28] | Lee S H, Li C W, Koh K W, Chuang H Y, Chen Y R, Lin C S, Chan M T . MSRB7 reverses oxidation of GSTF2/3 to confertolerance of Arabidopsis thaliana to oxidative stress. J Exp Bot, 2014,65:5049-5062. |
[29] |
Mao Z, Sun W . Arabidopsis seed-specific vacuolar aquaporins are involved in maintaining seed longevity under the control of Abscisic acid insensitive 3. J Exp Bot, 2015,66:4781-4794.
doi: 10.1093/jxb/erv244 pmid: 4507774 |
[30] |
Kang J, Yim S, Choi H, Kim A, Lee K P, Lopezmolina L, Martinoia E, Lee Y . Abscisic acid transporters cooperate to control seed germination. Nat Commun, 2015,6:8113.
doi: 10.1038/ncomms9113 pmid: 4569717 |
[31] |
Pandey C, Khan E, Panthri M, Tripathi R D, Gupta M . Impact of silicon on Indian mustard (Brassica juncea L.) root traits by regulating growth parameters, cellular antioxidants and stress modulators under arsenic stress. Plant Physiol Biochem, 2016,104:216-225.
doi: 10.1016/j.plaphy.2016.03.032 pmid: 27038600 |
[32] |
Hatzig S V, Frisch M, Breuer F, Nesi N, Ducournau S, Wagner M H, Leckband G, Abbadi A, Snowdon R J . Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus. Front Plant Sci, 2015, doi: 10.3389/fpls.2015.00221.
doi: 10.3389/fpls.2015.00221 pmid: 25914704 |
[33] |
Luo X, Ma C, Yue Y, Hu K, Li Y, Duan Z, Wu M, Tu J, Shen J, Yi B . Unravelling the complex trait of harvest index in rapeseed (Brassica napus L.) with association mapping. BMC Genomics, 2015,16:379.
doi: 10.1186/s12864-015-1607-0 pmid: 25962630 |
[34] |
Li F, Chen B, Xu K, Wu J, Song W, Bancroft I, Harper AL, Trick M, Liu S, Gao G . Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res, 2014,21:355-367.
doi: 10.1093/dnares/dsu002 pmid: 24510440 |
[35] |
Chen L, Wan H, Qian J, Guo J, Sun C, Wen J, Yi B, Ma C, Tu J, Song L . Genome-wide association study of cadmium accumulation at the seedling stage in rapeseed (Brassica napus L.). Front Plant Sci, 2018,9:375.
doi: 10.3389/fpls.2018.00375 |
[36] | Meharg A A, Macnair M R . An altered phosphate uptake system in arsenate-tolerant Holcus lanatus L. New Phytol, 1990,116:29-35. |
[37] |
Shin H, Shin H S, Dewbre G R, Harrison M J . Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J, 2004,39:629-642.
doi: 10.1111/j.1365-313X.2004.02161.x pmid: 15272879 |
[38] |
Nagarajan V K, Jain A, Poling M D, Lewis A J, Raghothama K G, Smith A P . Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling. Plant Physiol, 2011,156:1149.
doi: 10.1104/pp.111.174805 pmid: 21628630 |
[39] | Remy E, Cabrito T R, Batista R A, Teixeira M C, Sá-Correia I, Duque P . The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol, 2012,195:356-371. |
[40] | Lapis-Gaza H R, Jost R, Finnegan P M . Arabidopsis Phosphate transporter1 genes PHT1;8 and PHT1;9 are involved in root-to-shoot translocation of orthophosphate. BMC Plant Biol, 2014,14:334. |
[41] |
Zhu W, Miao Q, Sun D, Yang G, Wu C, Huang J, Zheng C . The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana. PLoS One, 2012,7:e43530.
doi: 10.1371/journal.pone.0043530 pmid: 22937061 |
[42] | Hamel P, Saint-Georges Y, de Pinto B, Lachacinski N, Altamura N, Dujardin G .Redundancy in the function of mitochondrial phosphate transport in Saccharomyces cerevisiae and Arabidopsis thaliana. Mol Microbiol, 2004,51:307-317. |
[43] |
Ortiz D F, Kreppel L, Speiser D M, Scheel G, McDonald G, Ow D W . Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter.EMBO J, 1992, 11:3491-3499.
doi: 10.1002/j.1460-2075.1992.tb05431.x pmid: 1396551 |
[44] |
孙瑞莲, 周启星 . 高等植物重金属耐性与超积累特性及其分子机理研究. 植物生态学报, 2005,29:497-504.
doi: 10.17521/cjpe.2005.0066 |
Sun R L, Zhou Q X . Heavy metal tolerance and hyperaccumulation of higher plants and their molecular mechanisms: a review. J Plant Ecol, 2005,29:497-504 (in Chinese with English abstract).
doi: 10.17521/cjpe.2005.0066 |
|
[45] | Mohamed S, Kheireddine O, Wyllia H M, Roquia R, Aicha D, Mourad B . Proportioning of biomarkers (GSH, GST, ache, catalase) Indicator of pollution at Gambusia affinis(Teleostei Fish) exposed to cadmium. Environ Res J, 2012,2:177-181. |
[46] | Guo J, Dai X, Xu W, Ma M . Over-expressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere, 2008,72:1020-1026. |
[1] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[2] | ZENG Wei-Ying, LAI Zhen-Guang, SUN Zu-Dong, YANG Shou-Zhen, CHEN Huai-Zhu, TANG Xiang-Min. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq [J]. Acta Agronomica Sinica, 2021, 47(8): 1460-1471. |
[3] | CHEN Can, NONG Bao-Xuan, XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting, YANG Xing-Hai. Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi [J]. Acta Agronomica Sinica, 2021, 47(6): 1114-1123. |
[4] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[5] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[6] | MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471. |
[7] | WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422. |
[8] | GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172. |
[9] | LEI Wei, WANG Rui-Li, WANG Liu-Yan, YUAN Fang, MENG Li-Jiao, XING Ming-Li, XU Lu, TANG Zhang-Lin, LI Jia-Na, CUI Cui, ZHOU Qing-Yuan. Genome-wide association study of seed density and its related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(11): 2099-2110. |
[10] | WANG Rui-Li,WANG Liu-Yan,YE Sang,Gao Huan-Huan,LEI Wei,WU Jia-Yi,YUAN Fang,MENG Li-Jiao,TANG Zhang-Lin,LI Jia-Na,ZHOU Qing-Yuan,CUI Cui. QTL mapping of seed germination-related traits in Brassica napus L. under aluminum toxicity stress [J]. Acta Agronomica Sinica, 2020, 46(6): 832-843. |
[11] | WU Hai-Tao, ZHANG Yong, SU Bo-Hong, Lamlom F Sobhi, QIU Li-Juan. Development of molecular markers and fine mapping of qBN-18 locus related to branch number in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1667-1677. |
[12] | LYU Wei-Sheng, XIAO Fu-Liang, ZHANG Shao-Wen, ZHENG Wei, HUANG Tian-Bao, XIAO Xiao-Jun, LI Ya-Zhen, WU Yan, HAN De-Peng, XIAO Guo-Bin, ZHANG Xue-Kun. Effects of sowing and fertilizing methods on yield and fertilizer use efficiency in red-soil dryland rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1790-1800. |
[13] | JIAN Hong-Ju, HUO Qiang, GAO Yu-Min, LI Yang-Yang, XIE Ling, WEI Li-Juan, LIU Lie-Zhao, LU Kun, LI Jia-Na. Selection of candidate genes for chlorophyll content in leaves of Brassica napus using genome-wide association analysis [J]. Acta Agronomica Sinica, 2020, 46(10): 1557-1565. |
[14] | HU Mao-Long, CHENG Li, GUO Yue, LONG Wei-Hua, GAO Jian-Qin, PU Hui-Ming, ZHANG Jie-Fu, CHEN Song. Development and application of the marker for imidazolinone-resistant gene in Brassica napus [J]. Acta Agronomica Sinica, 2020, 46(10): 1639-1646. |
[15] | Yang-Yang LI,Rong-Rong JING,Rong-Rong LYU,Peng-Cheng SHI,Xin LI,Qin WANG,Dan WU,Qing-Yuan ZHOU,Jia-Na LI,Zhang-Lin TANG. Genome-wide association analysis and candidate genes prediction of waterlogging-responding traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(12): 1806-1821. |
|