Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (2): 161-174.doi: 10.3724/SP.J.1006.2019.83053
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Next Articles
Yu-Xin YANG1,Zhi-Qin SANG1,2,Cheng XU1,Wen-Shuang DAI1,Cheng ZOU1,*()
[1] |
Stuart J M, Segal E, Koller D, Kim S K . A gene-coexpression network for global discovery of conserved genetic modules. Science, 2003,302:249-255.
doi: 10.1126/science.1087447 |
[2] |
Jeong H, Mason S P, Barabási A L, Oltvai Z N . Lethality and centrality in protein networks. Nature, 2001,411:41.
doi: 10.1038/35075138 pmid: 11333967 |
[3] |
Gille C, Hoffmann S, Holzhütter H G . METANNOGEN: compiling features of biochemical reactions needed for the reconstruction of metabolic networks. BMC Syst Biol, 2007,1:5.
doi: 10.1186/1752-0509-1-5 pmid: 17408512 |
[4] |
Barabási A L, Oltvai Z N . Network biology: understanding the cell's functional organization. Nat Rev Genet, 2004,5:101-113.
doi: 10.1038/nrg1272 |
[5] |
Liu S, Wang Z, Chen D, Zhang B, Tian R R, Wu J, Zhang Y, Xu K Y, Yang L M, Cheng C, Ma J, Lv L B, Zheng Y T, Hu X T, Yi Z, Wang X T, Li J L . Annotation and cluster analysis of spatiotemporal- and sex-related lncRNA expression in rhesus macaque brain. Genome Res, 2017,27:1608-1620.
doi: 10.1101/gr.217463.116 pmid: 28687705 |
[6] |
Greenham K, Guadagno C R, Gehan M A, Mockler T C, Weinig C, Ewers B E, McClung C R . Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in Brassica rapa. eLife, 2017,6:e29655.
doi: 10.7554/eLife.29655 pmid: 5628015 |
[7] |
Hollender C A, Kang C, Darwish O, Geretz A, Matthews B F, Slovin J, Alkharouf N, Liu Z . Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks. Plant Physiol, 2014,165:1062-1075.
doi: 10.1104/pp.114.237529 pmid: 24828307 |
[8] |
Vlăduţu C, McLaughlin J, Phillips R L . Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures. Genetics, 1999,153:993-1007.
doi: 10.1017/S0016672399004012 pmid: 10511573 |
[9] | Wong A Y, Colasanti J . Maize floral regulator protein INDETERMINATE1 is localized to developing leaves and is not altered by light or the sink/source transition. J Exp Bot, 2007,58:403-414. |
[10] |
Muszynski M G, Dam T, Li B, Shirbroun D M, Hou Z, Bruggemann E, Archibald R, Ananiev E V, Danilevskaya O N . Delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol, 2006,142:1523-1536.
doi: 10.1104/pp.106.088815 pmid: 17071646 |
[11] | Meng X, Muszynski M G, Danilevskaya O N . The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell, 2011,23:942-960. |
[12] |
Danilevskaya O N . delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol, 2006,142:1523-1536.
doi: 10.1104/pp.106.088815 pmid: 17071646 |
[13] |
Coles N D, McMullen M D, Balint-Kurti P J, Pratt R C, Holland J B . Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics, 2010,184:799-812.
doi: 10.1534/genetics.109.110304 |
[14] |
Sekhon R S, Lin H, Childs K L, Hansey C N, Buell C R, de Leon N, Kaeppler S M . Genome-wide atlas of transcription during maize development. Plant J, 2011,66:553-563.
doi: 10.1111/j.1365-313X.2011.04527.x pmid: 21299659 |
[15] |
Kroll K W, Mokaram N E, Pelletier A R, Frankhouser D E, Westphal M S, Stump P A, Stump C L, Bundschuh R, Blachly J S, Yan P . Quality Control for RNA-Seq (QuaCRS): an integrated quality control pipeline. Cancer Inform, 2014,13:7-14.
doi: 10.4137/CIN.S14022 pmid: 4214596 |
[16] |
Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L . Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc, 2016,11:1650-1667.
doi: 10.1038/nprot.2016.095 pmid: 27560171 |
[17] | 魏凯, 张婷婷, 马磊 . 猪基因共表达网络模块的构建及功能分析. 畜牧兽医学报, 2017,48:2205-2215. |
Wei K, Zhang T T, Ma L . Construction and functional analysis of gene co-expression network modules. Acta Veter Zootech Sin, 2017,48:2205-2215 (in Chinese with English abstract). | |
[18] |
林行众, 张忠华, 杨清, 黄三文 . 黄瓜共表达基因模块的识别及其特点分析. 农业生物技术学报, 2017,23:1121-1130.
doi: 10.3969/j.issn.1674-7968.2015.09.001 |
Lin X Z, Zhang Z H, Yang Q, Huang S W . Identification and characterization analysis of co-expression gene modules in cucumber (Cucumis sativus L.). J Agric Biotechnol, 2017,23:1121-1130 (in Chinese with English abstract).
doi: 10.3969/j.issn.1674-7968.2015.09.001 |
|
[19] |
Zhang B, Kirov S, Snoddy J . WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucl Acids Res, 2005,33:W741-W748.
doi: 10.1093/nar/gki475 pmid: 15980575 |
[20] |
Langfelder P, Horvath S . WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008,9:559.
doi: 10.1186/1471-2105-9-559 pmid: 19114008 |
[21] |
Downs G S, Bi Y M, Colasanti J, Wu W, Chen X, Zhu T, Rothstein S J, Lukens L N . A developmental transcriptional network for maize defines coexpression modules. Plant Physiol, 2013,161:1830-1843.
doi: 10.1104/pp.112.213231 pmid: 23388120 |
[22] |
Du Z, Zhou X, Ling Y, Zhang Z H, Su Z . agriGO: a GO analysis toolkit for the agricultural community. Nucl Acids Res, 2010,38:64-70
doi: 10.1093/nar/gkq310 pmid: 20435677 |
[23] |
Dong Z S, Danilevskaya O, Abadie T, Messina C, Coles N, Cooper M . A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling. PLoS One, 2012,7:e43450.
doi: 10.1371/journal.pone.0043450 pmid: 3422250 |
[24] |
Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T . Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003,13:2498-2504.
doi: 10.1101/gr.1239303 |
[25] |
Mascheretti I, Turner K, Brivio R S, Hand A, Colasanti J, Rossi V . Florigen-Encoding genes of day-neutral and photoperiod-sensitive maize are regulated by different chromatin modifications at the floral transition. Plant Physiol, 2015,168:1351-1363.
doi: 10.1104/pp.15.00535 pmid: 26084920 |
[26] |
Khan S, Rowe S C, Harmon F G . Coordination of the maize transcriptome by a conserved circadian clock. BMC Plant Biol, 2010,10:126.
doi: 10.1186/1471-2229-10-126 pmid: 3095283 |
[27] |
Sheehan M J, Kennedy L M, Costich D E, Brutnell T P . Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. Plant J, 2007,49:338-353.
doi: 10.1111/j.1365-313X.2006.02962.x pmid: 17181778 |
[28] |
Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S . Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001,28:286.
doi: 10.1038/90135 pmid: 11431702 |
[29] |
Larsson S J, Lipka A E, Buckler E S . Lessons from Dwarf8 on the strengths and weaknesses of structured association mapping. PLoS Genet, 2013,9:e1003246.
doi: 10.1371/journal.pgen.1003246 pmid: 23437002 |
[30] |
Lawit S J, Wych H M, Xu D, Kundu S, Tomes D T . Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol, 2010,51:1854-1868.
doi: 10.1093/pcp/pcq153 pmid: 20937610 |
[31] | Wang X, Wu L, Zhang S, Wu L, Ku L, Wei X, Xie L, Chen Y . Robust expression and association of ZmCCA1 with circadian rhythms in maize. Plant Cell Rep, 2011,30:1261-1272. |
[32] |
Miller T A, Muslin E H, Dorweiler J E . A maize CONSTANS-like gene, conz1, exhibits distinct diurnal expression patterns in varied photoperiods. Planta, 2008,227:1377-1388.
doi: 10.1007/s00425-008-0709-1 pmid: 18301915 |
[33] |
Sheehan M J, Farmer P R, Brutnell T P . Structure and expression of maize phytochrome family homeologs. Genetics, 2004,167:1395-1405
doi: 10.1534/genetics.103.026096 pmid: 15280251 |
[34] |
Hayes K R, Beatty M, Meng X, Simmons C R, Habben J E, Danilevskaya O N . Maize global transcriptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator. PLoS One, 2010,5:e12887.
doi: 10.1371/journal.pone.0012887 pmid: 20886102 |
[35] |
Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A . Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics, 2004,168:2169-2185.
doi: 10.1534/genetics.104.032375 pmid: 15611184 |
[36] |
Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S . Weighted gene coexpression network analysis: state of the art. J Biopharm Stat, 2010,20:281-300.
doi: 10.1080/10543400903572753 pmid: 20309759 |
[37] |
Holland J B . Genetic architecture of complex traits in plants. Curr Opin Plant Biol, 2007,10:156-161.
doi: 10.1016/j.pbi.2007.01.003 pmid: 17291822 |
[38] |
Camus-Kulandaivelu L, Veyrieras J B, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A . Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics, 2006,172:2449-2463.
doi: 10.1534/genetics.105.048603 pmid: 16415370 |
[1] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[2] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[3] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[4] | SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070. |
[5] | XU Xin, QIN Chao, ZHAO Tao, LIU Bin, LI Hong-Yu, LIU Jun. Function analysis of GmELF3s in regulating soybean flowering time and circadian rhythm [J]. Acta Agronomica Sinica, 2022, 48(4): 812-824. |
[6] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[7] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[8] | YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974. |
[9] | QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004. |
[10] | XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579. |
[11] | SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738. |
[12] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[13] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
[14] | ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192. |
[15] | YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150. |
|