Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (2): 161-174.doi: 10.3724/SP.J.1006.2019.83053

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Identification of maize flowering gene co-expression modules by WGCNA

Yu-Xin YANG1,Zhi-Qin SANG1,2,Cheng XU1,Wen-Shuang DAI1,Cheng ZOU1,*()   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2 Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, Xinjiang, China
  • Received:2018-07-17 Accepted:2018-10-08 Online:2019-02-12 Published:2018-11-08
  • Contact: Cheng ZOU E-mail:zoucheng@caas.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0100303);the National Natural Science Foundation of China(31371638)

Abstract:

Weighted gene co-expression network analysis (WGCNA) is one of the research methods in systematic biology. It can effectively analyze the complex samples, and has been extensively used in the analysis of complicated traits for many samples. Weighted gene co-expression network has the characteristics of scale-free distribution and could construct the scale free network. The genes with similar expression level can be clustered and assigned to a module, then the relationships between co-expression modules and specific tissues can be furtherly analyzed. Our research utilized the transcriptome data of 14 different tissues of maize (Zea mays L.) inbred line B73, and calculated the gene expression level of the whole genome. Through filtering out the genes with low expression level we finally got 22,426 genes with high expression level to construct the gene expression matrix. We utilized the different tissues as the trait to construct the trait matrix. The weighted gene co-expression network analysis packages of R software was used to perform the co-expression network analysis, and 20 co-expression modules were identified. We finally obtained 14 tissue specific modules which were highly correlated with traits (r > 0.65). The enrichment analysis tool Agrigo was taken to perform the GO enrichment of the tissue specific module genes, all the 14 tissues could be enriched in GO terms. Flowering is one of the important agronomic traits in the life cycle of maize controlled by external environment signals and genetic factors. Maize flowering not only represents the transition from the vegetative growth to reproductive growth, also relates to grain yield, plant height and resistance. In our research, we detected eight tissue specific modules, which could be obtained within flowering time related pathways. In addition, 17 flowering genes which have been reported in the literatures were assigned to the co-expression modules, and mainly assigned to the Blue and Darkmagenta modules. Therefore, we focused on the network of Blue and Darkmagenta modules. Our research calculated the gene expression abundances, and detected several flowering time related modules, which will contribute to revealing the genetic mechanism of maize flowering time regulation.

Key words: maize, weighted gene co-expression network, development regulation, flowering, transcriptome

Fig. 1

Determination of soft threshold The abscissa represents the soft threshold (β). A: ordinate corresponds to the index of scale free network model; B: the average link degree of each soft threshold."

Fig. 2

Gene cluster dendrograms and module detecting A: clustering of genes based on the topological overlap. B: the gene modules obtained from the dynamic tree cut. C: the merged modules with similar expression pattern."

Fig. 3

Clustering dendrogram of samples and corresponding tissue information A: the gene cluster tree based on the Euclidean distance. The abscissa represents the different tissues. The ordinate represents the cluster height of genes. B: the association trait heatmap, the white means a low correlation, the red means a high correlation."

Fig. 4

Distribution of number of genes in modules The abscissa represents the modules and the vertical ordinate represents the gene number of each module."

Fig. 5

Heat map of module-trait relationship Each column represents the co-expression module. Red color of each box represents the positive correlation between module and trait. Green color of each box represents the negative relationships between module and trait."

Fig. 6

Enrichment pathway of flowering time Each row corresponds to a GO enrichment pathway, column to a tissue specific module. The point size is calculated by the P-value of multiple check. The Richfactor represent the ratio of input genes to the background genes."

Fig. 7

Gene co-expression network of the blue module"

Fig. 8

Gene co-expression network of the darkmagenta module"

Fig. 9

Gene interaction network of blue module Each node corresponding to a gene, the red node is the hub gene of the network and is the flowering time gene which had reported."

Fig. 10

The gene interaction network of darkmagenta module Each node corresponding to a gene, the red node is the hub gene of the network and is the flowering time gene which had reported."

Table 1

Annotation of candidate flowering gene in Darkmagenta and Blue modules"

模块
Module
开花基因
Flowering gene
候选开花基因
Candidate flowering gene
候选基因在拟南
芥同源基因
Homologous gene
in A. thaliana
基因功能
Gene function
Blue ZCN8 GRMZM2G450273 FPF1 编码调节开花的小蛋白质并参与赤霉素信号传导途径, 在开花的光周期诱导后, 在顶端分生组织中表达
Encodes a small protein that regulates flowering and is involved in gibberellin signalling pathway. It is expressed in apical meristems immediately after the photoperiodic induction of flowering
ZCN7 GRMZM2G455413 PSBA 编码叶绿素结合蛋白D1, 属于光系统II反应中心
Encodes chlorophyll binding protein D1, belonging to photosystem II reaction center core
COL1 GRMZM2G128212 ZFP8 编码锌指蛋白
Encodes a zinc finger protein
PhyB1 GRMZM5G800407 PMAT2 编码消除酚类毒素的丙二酰转移酶
Encodes a malonyltransferase that may play a role in
phenolic xenobiotic detoxification
D8 GRMZM2G338809 AMT2 编码高亲和性的铵转运蛋白
Encodes a high-affinity ammonium transporter
D9 GRMZM2G429322 LHT1 编码一个在细胞间转运氨基酸的高亲和力蛋白
Encoding a high affinity protein that translocation amino acids between cells
ZmCCA1 GRMZM6G435553 PMI1 响应蓝光和渗透压胁迫
Response to blue light and osmotic stress
Darkmagenta GIGZ1B GRMZM2G333183 ABCB1 ATP结合蛋白, 调节生长素转运
ATP-binding protein, regulates the transport of auxin
PhyC2 GRMZM2G038846 AT1G19320 与发病机制相关的超家族蛋白
Pathogenesis-related thaumatin superfamily protein
GIGZ1A GRMZM2G104269 OASC 参与花粉管生长和受精
Involved in pollen tube growth and fertilization
ZmFKF1b GRMZM2G041065 ATAVP3 无机H焦磷酸酶家族蛋白, 在分生组织和花器官原基表达
Inorganic H pyrophosphatase family protein. Expressed in meristems and floral organ primordium
ZmFKF1a GRMZM2G027673 FAB2 植物硬脂酰酰基载体蛋白去饱和酶家族蛋白
Plant stearoyl-acyl-carrier-protein desaturase family protein
ZmPRR59 GRMZM2G107945 FKF1 编码黄素结合的F-box蛋白, 调节花期转变
Encodes flavin-binding F-box protein, regulates transition to flowering
ZmPRR59 GRMZM2G106363 LKP2 编码F-box蛋白, 响应红光和蓝光, 参与光周期途径
Encodes a member of F-box proteins, response to red and blue light, involved in photoperiod pathway

Supplementary table 1

GO enrichment analysis results of tissue specific module (part)"

模块
Module
GO条目
GO term
本体
Ontology
描述
Description
P
P-value
Darkorange2 GO: 0009889 BP 生物合成过程调节Regulation of biosynthetic process 6.90E-07
Darkorange2 GO: 0006355 BP DNA依赖的转录调节Regulation of transcription, DNA-dependent 4.40E-07
Darkorange2 GO: 0015267 MF 通道活性Channel activity 0.00068
Darkorange2 GO: 0022838 MF 底物特异性通道活性Substrate-specific channel activity 0.00068
Blue GO: 0009628 BP 非生物刺激的反应Response to abiotic stimulus 3.60E-10
Blue GO: 0009416 BP 光刺激响应Response to light stimulus 1.60E-08
Blue GO: 0003700 MF 转录因子活性Transcription factor activity 0.00017
Blue GO: 0009535 CC 叶绿体类囊体膜Chloroplast thylakoid membrane 0.00022
Darkred GO: 0051186 BP 辅因子代谢过程Cofactor metabolic process 1.20E-19
Darkred GO: 0004252 MF 丝氨酸型肽链内切酶活性Serine-type endopeptidase activity 0.00015
Darkred GO: 0009543 CC 叶绿体类囊体腔 Chloroplast thylakoid lumen 4.40E-13
Darkslateblue GO: 0016051 BP 碳水化合物生物合成过程Carbohydrate biosynthetic process 5.60E-05
Darkslateblue GO: 0016830 MF 碳-碳裂解酶活性Carbon-carbon lyase activity 3.40E-06
Darkslateblue GO: 0042651 CC 类囊体膜Thylakoid membrane 0.00013
Turquoise GO: 0060560 BP 形态发生发育Developmental growth involved in morphogenesis 1.70E-11
Turquoise GO: 0015299 MF 溶质: 氢反向转运蛋白活性Solute: hydrogen antiporter activity 4.60E-05
Turquoise GO: 0031224 CC 内膜Intrinsic to membrane 8.50E-06
Darkmagenta GO: 0010927 BP 涉及形态发生的内膜组装
Cellular component assembly involved in morphogenesis
4.10E-09
Darkmagenta GO: 0004553 MF 水解酶活性, 水解O-糖基化合物
Hydrolase activity, hydrolyzing O-glycosyl compounds
7.60E-06
Darkmagenta GO: 0030312 CC 高尔基体Golgi apparatus 0.0004
Bisque4 GO: 0042180 BP 细胞酮代谢过程Cellular ketone metabolic process 3.00E-08
Bisque4 GO: 0044281 BP 小分子代谢过程Small molecule metabolic process 9.90E-06
Bisque4 GO: 0042221 BP 相应化学刺激Response to chemical stimulus 0.00032
Darkgrey GO: 0010033 BP 对有机物质的反应Response to organic substance 1.60E-07
Darkgrey GO: 0004553 MF 水解酶活性, 水解O-糖基化合物
Hydrolase activity, hydrolyzing O-glycosyl compounds
4.40E-10
Darkgrey GO: 0005740 CC 线粒体包膜Mitochondrial envelope 7.40E-05
Floralwhite GO: 0006412 BP 蛋白质翻译Translation 9.10E-07
Floralwhite GO: 0005198 MF 结构分子活性Structural molecule activity 5.80E-08
Floralwhite GO: 0043227 CC 膜有界细胞器Membrane-bounded organelle 0.0085
Darkolivegreen GO: 0010022 BP 分生组织决定Meristem determinacy 6.10E-07
模块
Module
GO条目
GO term
本体
Ontology
描述
Description
P
P-value
Darkolivegreen GO: 0003700 MF 转录因子活性Transcription factor activity 5.50E-05
Orange GO: 0042542 BP 过氧化氢反应Response to hydrogen peroxide 2.90E-05
Orange GO: 0009526 CC 质体Plastid 9.60E-09
Yellow GO: 0009605 BP 响应外界刺激Response to external stimulus 8.40E-10
Yellow GO: 0022892 MF 底物特异性转运体活性Substrate-specific transporter activity 0.00013
Plum2 GO: 0048437 BP 花器官发育Floral organ development 9.20E-05
Plum2 GO: 0005576 CC 胞外区Extracellular region 9.70E-05
Greenyellow GO: 0034220 BP 离子跨膜转运Ion transmembrane transport 5.00E-13
Greenyellow GO: 0032561 MF 鸟苷酸核糖核酸结合Guanyl ribonucleotide binding 2.40E-10
Greenyellow GO: 0043231 CC 内细胞器膜Organelle inner membrane 1.20E-17
[1] Stuart J M, Segal E, Koller D, Kim S K . A gene-coexpression network for global discovery of conserved genetic modules. Science, 2003,302:249-255.
doi: 10.1126/science.1087447
[2] Jeong H, Mason S P, Barabási A L, Oltvai Z N . Lethality and centrality in protein networks. Nature, 2001,411:41.
doi: 10.1038/35075138 pmid: 11333967
[3] Gille C, Hoffmann S, Holzhütter H G . METANNOGEN: compiling features of biochemical reactions needed for the reconstruction of metabolic networks. BMC Syst Biol, 2007,1:5.
doi: 10.1186/1752-0509-1-5 pmid: 17408512
[4] Barabási A L, Oltvai Z N . Network biology: understanding the cell's functional organization. Nat Rev Genet, 2004,5:101-113.
doi: 10.1038/nrg1272
[5] Liu S, Wang Z, Chen D, Zhang B, Tian R R, Wu J, Zhang Y, Xu K Y, Yang L M, Cheng C, Ma J, Lv L B, Zheng Y T, Hu X T, Yi Z, Wang X T, Li J L . Annotation and cluster analysis of spatiotemporal- and sex-related lncRNA expression in rhesus macaque brain. Genome Res, 2017,27:1608-1620.
doi: 10.1101/gr.217463.116 pmid: 28687705
[6] Greenham K, Guadagno C R, Gehan M A, Mockler T C, Weinig C, Ewers B E, McClung C R . Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in Brassica rapa. eLife, 2017,6:e29655.
doi: 10.7554/eLife.29655 pmid: 5628015
[7] Hollender C A, Kang C, Darwish O, Geretz A, Matthews B F, Slovin J, Alkharouf N, Liu Z . Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks. Plant Physiol, 2014,165:1062-1075.
doi: 10.1104/pp.114.237529 pmid: 24828307
[8] Vlăduţu C, McLaughlin J, Phillips R L . Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures. Genetics, 1999,153:993-1007.
doi: 10.1017/S0016672399004012 pmid: 10511573
[9] Wong A Y, Colasanti J . Maize floral regulator protein INDETERMINATE1 is localized to developing leaves and is not altered by light or the sink/source transition. J Exp Bot, 2007,58:403-414.
[10] Muszynski M G, Dam T, Li B, Shirbroun D M, Hou Z, Bruggemann E, Archibald R, Ananiev E V, Danilevskaya O N . Delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol, 2006,142:1523-1536.
doi: 10.1104/pp.106.088815 pmid: 17071646
[11] Meng X, Muszynski M G, Danilevskaya O N . The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell, 2011,23:942-960.
[12] Danilevskaya O N . delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol, 2006,142:1523-1536.
doi: 10.1104/pp.106.088815 pmid: 17071646
[13] Coles N D, McMullen M D, Balint-Kurti P J, Pratt R C, Holland J B . Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics, 2010,184:799-812.
doi: 10.1534/genetics.109.110304
[14] Sekhon R S, Lin H, Childs K L, Hansey C N, Buell C R, de Leon N, Kaeppler S M . Genome-wide atlas of transcription during maize development. Plant J, 2011,66:553-563.
doi: 10.1111/j.1365-313X.2011.04527.x pmid: 21299659
[15] Kroll K W, Mokaram N E, Pelletier A R, Frankhouser D E, Westphal M S, Stump P A, Stump C L, Bundschuh R, Blachly J S, Yan P . Quality Control for RNA-Seq (QuaCRS): an integrated quality control pipeline. Cancer Inform, 2014,13:7-14.
doi: 10.4137/CIN.S14022 pmid: 4214596
[16] Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L . Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc, 2016,11:1650-1667.
doi: 10.1038/nprot.2016.095 pmid: 27560171
[17] 魏凯, 张婷婷, 马磊 . 猪基因共表达网络模块的构建及功能分析. 畜牧兽医学报, 2017,48:2205-2215.
Wei K, Zhang T T, Ma L . Construction and functional analysis of gene co-expression network modules. Acta Veter Zootech Sin, 2017,48:2205-2215 (in Chinese with English abstract).
[18] 林行众, 张忠华, 杨清, 黄三文 . 黄瓜共表达基因模块的识别及其特点分析. 农业生物技术学报, 2017,23:1121-1130.
doi: 10.3969/j.issn.1674-7968.2015.09.001
Lin X Z, Zhang Z H, Yang Q, Huang S W . Identification and characterization analysis of co-expression gene modules in cucumber (Cucumis sativus L.). J Agric Biotechnol, 2017,23:1121-1130 (in Chinese with English abstract).
doi: 10.3969/j.issn.1674-7968.2015.09.001
[19] Zhang B, Kirov S, Snoddy J . WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucl Acids Res, 2005,33:W741-W748.
doi: 10.1093/nar/gki475 pmid: 15980575
[20] Langfelder P, Horvath S . WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008,9:559.
doi: 10.1186/1471-2105-9-559 pmid: 19114008
[21] Downs G S, Bi Y M, Colasanti J, Wu W, Chen X, Zhu T, Rothstein S J, Lukens L N . A developmental transcriptional network for maize defines coexpression modules. Plant Physiol, 2013,161:1830-1843.
doi: 10.1104/pp.112.213231 pmid: 23388120
[22] Du Z, Zhou X, Ling Y, Zhang Z H, Su Z . agriGO: a GO analysis toolkit for the agricultural community. Nucl Acids Res, 2010,38:64-70
doi: 10.1093/nar/gkq310 pmid: 20435677
[23] Dong Z S, Danilevskaya O, Abadie T, Messina C, Coles N, Cooper M . A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling. PLoS One, 2012,7:e43450.
doi: 10.1371/journal.pone.0043450 pmid: 3422250
[24] Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T . Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003,13:2498-2504.
doi: 10.1101/gr.1239303
[25] Mascheretti I, Turner K, Brivio R S, Hand A, Colasanti J, Rossi V . Florigen-Encoding genes of day-neutral and photoperiod-sensitive maize are regulated by different chromatin modifications at the floral transition. Plant Physiol, 2015,168:1351-1363.
doi: 10.1104/pp.15.00535 pmid: 26084920
[26] Khan S, Rowe S C, Harmon F G . Coordination of the maize transcriptome by a conserved circadian clock. BMC Plant Biol, 2010,10:126.
doi: 10.1186/1471-2229-10-126 pmid: 3095283
[27] Sheehan M J, Kennedy L M, Costich D E, Brutnell T P . Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. Plant J, 2007,49:338-353.
doi: 10.1111/j.1365-313X.2006.02962.x pmid: 17181778
[28] Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S . Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001,28:286.
doi: 10.1038/90135 pmid: 11431702
[29] Larsson S J, Lipka A E, Buckler E S . Lessons from Dwarf8 on the strengths and weaknesses of structured association mapping. PLoS Genet, 2013,9:e1003246.
doi: 10.1371/journal.pgen.1003246 pmid: 23437002
[30] Lawit S J, Wych H M, Xu D, Kundu S, Tomes D T . Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol, 2010,51:1854-1868.
doi: 10.1093/pcp/pcq153 pmid: 20937610
[31] Wang X, Wu L, Zhang S, Wu L, Ku L, Wei X, Xie L, Chen Y . Robust expression and association of ZmCCA1 with circadian rhythms in maize. Plant Cell Rep, 2011,30:1261-1272.
[32] Miller T A, Muslin E H, Dorweiler J E . A maize CONSTANS-like gene, conz1, exhibits distinct diurnal expression patterns in varied photoperiods. Planta, 2008,227:1377-1388.
doi: 10.1007/s00425-008-0709-1 pmid: 18301915
[33] Sheehan M J, Farmer P R, Brutnell T P . Structure and expression of maize phytochrome family homeologs. Genetics, 2004,167:1395-1405
doi: 10.1534/genetics.103.026096 pmid: 15280251
[34] Hayes K R, Beatty M, Meng X, Simmons C R, Habben J E, Danilevskaya O N . Maize global transcriptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator. PLoS One, 2010,5:e12887.
doi: 10.1371/journal.pone.0012887 pmid: 20886102
[35] Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A . Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics, 2004,168:2169-2185.
doi: 10.1534/genetics.104.032375 pmid: 15611184
[36] Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S . Weighted gene coexpression network analysis: state of the art. J Biopharm Stat, 2010,20:281-300.
doi: 10.1080/10543400903572753 pmid: 20309759
[37] Holland J B . Genetic architecture of complex traits in plants. Curr Opin Plant Biol, 2007,10:156-161.
doi: 10.1016/j.pbi.2007.01.003 pmid: 17291822
[38] Camus-Kulandaivelu L, Veyrieras J B, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A . Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics, 2006,172:2449-2463.
doi: 10.1534/genetics.105.048603 pmid: 16415370
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Xin, QIN Chao, ZHAO Tao, LIU Bin, LI Hong-Yu, LIU Jun. Function analysis of GmELF3s in regulating soybean flowering time and circadian rhythm [J]. Acta Agronomica Sinica, 2022, 48(4): 812-824.
[6] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[7] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[8] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[9] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
[10] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[11] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[12] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[13] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[14] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[15] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!