Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (6): 818-828.doi: 10.3724/SP.J.1006.2019.84133

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Detection of stem height QTL and integration of the loci for plant height- related traits in B. napus

Li-Juan WEI1,2,*,Rui-Ying LIU1,2,*,Li ZHANG1,2,Zhi-You CHEN1,2,Hong YANG1,2,Qiang HUO1,2,Jia-Na LI1,2,*()   

  1. 1 College of Agronomy and Biotechnology, Southwest University / Chongqing Engineering Research Center for Rapeseed, Chongqing 400715, China
    2 Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
  • Received:2018-10-23 Accepted:2019-01-19 Online:2019-06-12 Published:2019-06-12
  • Contact: Li-Juan WEI,Rui-Ying LIU,Jia-Na LI E-mail:ljn1950@swu.edu.cn
  • Supported by:
    This study was supported by the China Postdoctoral Science Foundation Funded Project(2017M622945);National Postdoctoral Program for Innovative Talents(BX201700201);National Postdoctoral Program for Innovative Talents(Chongqing Graduate Student Research Innovation Project CYS17078);the National Basic Research Program of China(973 Program 40203917);National Natural Science Foundation of China (31701460).

Abstract:

Stem height (SH) is important for the plant architecture and yield in Brassica napus. To date, the research about stem height in B. napus is very less. In the study, QTL mapping of stem height in B. napus was performed using the high density SNP genetic map constructed from the recombinant inbred lines (RIL) population with Illumina 60K SNP array. Totally 11 QTLs were detected in two years on A04, A06, C04, A08, and C01, which explained 7.25%-19.61% of the phenotypic variation. In addition, genome-wide association analysis (GWAS) of stem height in the 455 B. napus genotyped by resequencing was performed, and five significantly associated SNP loci on A08, A10, C02, and C06 were identified. And the candidate genes involved in photomorphogenesis, plant growth and development, and hormone pathway such as auxin, gibberellin and brassinosteroid were identified. We also integrated the loci for plant height-related traits including plant height (PH), main inflorescence length (MIL), branch segment (BS) and branch initiation height (BIH) in B. napus, in which four loci for PH on A01, A03, A07, C03, and C06 were identified in at least four populations, one locus for MIL on A10 and two loci for BIH on A02 and C03 were identified in two populations. The loci for stem height in our study were consistent with pervious QTL mapping results for plant height, branch initiation height and main inflorescence length. This study lays a foundation for the breeding of plant architecture in B. napus.

Key words: Brassica napus, stem height, QTL mapping, GWAS, loci integration

Table 1

Phenotypic variation of stem height in RIL population and natural population"

年份
Year
平均值±标准偏差
Mean±SD (cm)
范围
Range (cm)
变异系数
CV (%)
父本ZY821 Male parent ZY821 2016 138.00±5.51
2017 131.90±12.30
母本GH06 Female parent GH06 2016 159.60±6.46
2017 145.60±8.77
重组自交系RIL 2016 150.64±11.49 119.00-174.25 7.63
2017 148.53±10.91 114.40-175.00 7.34
自然群体 Natural population 2016 156.58±17.11 93.86-200.10 10.93
2017 143.01±21.20 62.00-202.60 14.82

Fig. 1

Frequency distribution of stem height in RIL (a) and natural population (b)"

Table 2

Correlation coefficients of stem height with plant architecture and yield traits in B. napus"

性状
Trait
重组自交系 RIL 自然群体 Natural population
2016SH 2017SH 2016SH 2017SH
主花序长度 Main infloresences length (cm) -0.403** -0.355** -0.089 -0.306**
株高 Plant height (cm) 0.738** 0.617** 0.865** 0.865**
结荚高度 Height of podding (cm) 0.638** 0.581** 0.745** 0.850**
结荚厚度 Thickness of pod canopy (cm) 0.089 0.024 0.185 0.101
一次有效分枝起点 Branch initiation height (cm) 0.610** 0.589** 0.621** 0.772**
经济产量 Yield (g) 0.341** 0.037 0.255** 0.286**

Table 3

QTL related to stem height in B. napus"

位点
QTL
染色体
Chr.
LOD阈值
LOD score
标记区间
SNP interval
加性效应a
Additive effect
贡献率
R2 (%)
物理区间
Physical position (bp)
q2016SH-A04-1 A04 3.72 SNP42542-SNP9367 6.21 13.70
q2016SH-A04-2 5.61 SNP9354-SNP9343 7.17 19.52 18264803-18455956
q2016SH-A04-3 2.90 SNP42544-SNP9263 5.61 10.78 17846583-18115323
q2016SH-A06-1 A06 4.33 SNP13035-SNP13048 -4.72 14.46 1469838-1480581
q2016SH-A06-2 5.50 SNP13263-SNP34194 -5.45 19.61 1860393-2106757
q2016SH-A06-3 4.56 SNP12979-SNP13009 -4.88 15.07 1360428-1442742
q2016SH-A06-4 2.83 SNP14849-SNP14835 3.65 8.88 6967630-7274382
q2016SH-C04 C04 3.29 SNP49157-SNP49146 3.85 9.97 7352388-7867004
q2017SH-A08 A08 3.94 SNP18566-SNP18577 2.95 7.25 18081289-18861275
q2017SH-C01-1 C01 6.11 SNP2398-SNP37156 3.80 11.86
q2017SH-C01-2 6.02 SNP37161-SNP38210 3.79 11.70 12068324-12309768

Fig. 2

Chromosomal locations of QTL for stem height in RIL population Grey boxes indicated the 99% confidence interval of the QTL; “T” on the boxes indicated the 95% confidence interval of the QTL."

Fig. 3

Population structure of 455 B. napus"

Fig. 4

Manhattan and quantile-quantile plot for stem height in 2016 and 2017"

Table 4

Markers with significant association for stem height"

位点
Locus
环境
Environment
模型
Model
位点
SNP
染色体
Chr.
位置
Position
阈值
-lg (P)
贡献率
R2(%)
2016SH-1 2016 Naive S8_12459044 A08 12459044 5.90 15.90
2016SH-2 S10_16428321 A10 16428321 5.62 15.64
2017SH-1 2017 K+PCA S12_13075515 C02 13075515 7.62 10.08
2017SH-2 S12_13075493 C02 13075493 5.64 6.91
2017SH-3 S16_28288339 C06 28288339 5.70 6.86

Fig. 5

Integration of the loci for plant height-related traits in B. napus PH: plant height; MIL: main inflorescence length; BS: branch segment; BIH: branch initiation height; SH: stem height."

Table 5

Identification of candidate genes for stem height"

位点名称
Name
基因
Genes
物理位置
Physical position
拟南芥同源基因
Homologs in A. thaliana
功能注释
Functional annotation
q2016SH-A04-2 BnaA04g25550D A04: 18331184-18331589 AT2G44080/ARL 调控细胞大小
Regulated cell expansion
q2016SH-A04-3 BnaA04g24760D A04: 18025141-18026983 AT2G43010/PIF4 编码转录因子bHLH, 参与生长素生物合成, 调控下胚轴伸长
Encoded the bHLH transcription factor, involving in the auxin biosynthesis and regulating hypocotyl elongation
BnaA04g24770D A04: 18030030-18033008 AT2G43020/PAO2 参与ABA介导的植物生长
Involved in plant development mediated by ABA
BnaA04g24970D A04: 18140559-18140805 AT2G43280/FAR1 调控光敏色素信号传导
Involved in phytochrome A signaling
BnaA04g24980D A04: 18141000-18144940 AT2G43280/FAR1 调控光敏色素信号传导
Involved in phytochrome A signaling
q2016SH-A06-2 BnaA06g03090D A06: 1869158-1871192 AT1G49770/RGE1 编码转录因子bHLH,影响植物生长发育
Encoded the bHLH transcription factor, regulating plant growth and development
q2016SH-A06-4 BnaA06g13320D A06: 6972730-6976892 AT1G19220/ARF19 参与生长素和乙烯信号传导过程
Involved in auxin and ethylene signaling
q2016SH-C04 BnaC04g10190D C04: 7847368-7848334 AT2G35150/EXL7 调控植物生长发育
Regulated plant growth and development
q2017SH-A08 BnaA08g28200D A08: 18580209-18583117 AT1G05180/AXR1 参与生长素抵抗反应
Involved in auxin resistance
q2017SH-C01-2 BnaC01g17440D C01: 12009590-12010572 AT4G25560/MYB18 调控光形态建成
Regulated photomorphogenesis in the light
2016SH-1 BnaA08g15400D A08: 12809202-12810946 AT4G36730/GBF1 调控光形态建成
Regulated photomorphogenesis in the light
2016SH-2 BnaA10g24860D A10: 16153991-16157850 AT5G05690/CPD 编码CP90A蛋白, 参与油菜素内酯生物合成
Encoded a member of the CP90A family, and involved in the brassinosteroid biosynthesis
2017SH-1 BnaC02g17570D C02: 13199941-13200513 AT5G13790/AGL15 MADS家族成员, 参与赤霉素代谢
Encoded a member of the MADS family, and involved in the gibberellin metabolic process
2017SH-2 BnaC06g27170D C06: 28615555-28619464 AT5G37020/ARF8 参与生长素稳态
Involved in auxin homeostasis
[1] Cai G, Yang Q, Chen H, Yang Q, Zhang C, Fan C, Zhou Y . Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep, 2016,6, doi: 10.1038/srep21625.
doi: 10.1038/srep21625 pmid: 26880301
[2] 杨光, 冷锁虎, 左青松, 李苗苗, 冯云艳, 张含笑, 刘浩, 冯倩南, 张娟, 惠飞虎 . 薹肥施用时期和施氮量对毯苗移栽油菜株高和产量的影响. 中国农学通报, 2017,33(4):30-37.
Yang G, Leng S H, Zuo Q S, Li M M, Feng Y Y, Zhang H X, Liu H, Feng Q N, Zhang J, Hui F H . Effects of fertilizer bolting period and N fertilizer application amount on height and yield of blanket seedling transplanting rapeseed. Chin Sci Bull, 2017,33(4):30-37 (in Chinese with English abstract).
[3] Sabaghnia N, Dehghani H, Alizadeh B, Mohghaddam M . Interrelationships between seed yield and 20 related traits of 49 canola(Brassica napus L.) genotypes in non-stressed and water-stressed environments. Span J Agric Res, 2010, 8:356-370.
doi: 10.5424/sjar/2010082-1195
[4] Shen Y, Xiang Y, Xu E, Ge X, Li Z . Major co-localized QTL for plant height, branch initiation height, stem diameter, and flowering time in an alien introgression derived Brassica napus DH population. Front Plant Sci, 2018,9, doi: 10.3389/fpls.2018. 00390.
doi: 10.3389/fpls.2018.00390
[5] 王嘉, 荆凌云, 荐红举, 曲存民, 谌利, 李加纳, 刘列钊 . 甘蓝型油菜株高、第一分枝高和分枝数的QTL检测及候选基因筛选. 作物学报, 2015,41:1027-1038.
Wang J, Jing L Y, Jian H J, Qu C M, Chen L, Li J N, Liu L Z . Quantitative trait loci mapping for plant height, the first branch height, and branch number and possible candidate genes screening in Brassica napus L. Acta Agron Sin, 2015,41:1027-1038 (in Chinese with English abstract).
[6] Sun C, Wang B, Yan L, Hu K, Liu S, Zhou Y, Guan C, Zhang Z, Li J, Zhang J, Chen S, Wen J, Ma C, Tu J, Shen J, Yi B . Genome-wide association study provides insight into the genetic control of plant height in rapeseed (Brassica napus L.). Front Plant Sci, 2016,7, doi: 10.3389/fpls.2016.01102.
doi: 10.3389/fpls.2016.01102 pmid: 4961929
[7] 贺亚军, 吴道明, 傅鹰, 钱伟 . 利用DH和IF2群体检测甘蓝型油菜株高相关性状QTL. 作物学报, 2018,44:533-541.
He Y J, Wu D M, Fu Y, Qian W . Detection of QTLs for plant height related traits in Brassica napus L. using DH and immortalized F2 Population. Acta Agron Sin, 2018,44:533-541 (in Chinese with English abstract).
[8] Udall J A, Quijada P A, Lambert B, Osborn T C . Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet, 2006,113:597-609.
doi: 10.1007/s00122-006-0323-1 pmid: 16767446
[9] Basunanda P, Radoev M, Ecke W, Friedt W, Becker H C, Snowdon R J . Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor Appl Genet, 2010,120:271-281.
doi: 10.1007/s00122-009-1133-z pmid: 19707740
[10] Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J . Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics, 2009,182:851-861.
doi: 10.1534/genetics.109.101642 pmid: 19414564
[11] Cai D, Xiao Y, Yang W, Ye W, Wang B, Younas M, Wu J, Liu K . Association mapping of six yieldrelated traits in rapeseed (Brassica napus L.). Theor Appl Genet, 2014,127:85-96.
doi: 10.1007/s00122-013-2203-9 pmid: 24121524
[12] Zheng M, Peng C, Liu H, Tang M, Yang H, Li X, Liu J, Sun X, Wang X, Xu J, Hua W, Wang H . Genome-wide association study reveals candidate genes for control of plant height, branch initiation height and branch number in rapeseed (Brassica napus L.). Front Plant Sci, 2017,8, doi: 10.3389/fpls.2017.01246.
doi: 10.3389/fpls.2017.01246 pmid: 5513965
[13] Li F, Chen B, Xu K, Gao G, Yan G, Qiao J, Li J, Li H, Li L, Xiao X, Zhang T, Nishio T, Wu X . A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Sci, 2016,242:169-177.
doi: 10.1016/j.plantsci.2015.05.012 pmid: 26566834
[14] Chen W, Zhang Y, Liu X, Chen B, Tu J, Tingdong F . Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet, 2007,115:849-858.
doi: 10.1007/s00122-007-0613-2 pmid: 17665168
[15] Zhao W, Wang X, Wang H, Tian J, Li B, Chen L, Chao H, Long Y, Xiang J, Gan J, Liang W, Li M . Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in Brassica napus. Front Plant Sci, 2016,7, doi: 10.3389/fpls.2016.00017.
doi: 10.3389/fpls.2016.00017 pmid: 26858737
[16] Luo Z, Wang M, Long Y, Huang Y, Shi L, Zhang C, Liu X , Fitt B D L, Xiang J, Mason A S, Snowdon R J, Liu P, Meng J, Zou J. Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example. Theor Appl Genet, 2017,130:1569-1585.
doi: 10.1007/s00122-017-2911-7 pmid: 5719798
[17] Raboanatahiry N, Chao H, Dalin H, Pu S, Yan W, Yu L, Wang B, Li M . QTL alignment for seed yield and yield related traits in Brassica napus. Front Plant Sci, 2018,9, doi: 10.3389/fpls.2018. 01127.
doi: 10.3389/fpls.2018.01127
[18] 张江江, 詹杰鹏, 刘清云, 师家勤, 王新发, 刘贵华, 王汉中 . 油菜株高OTL定位、整合和候选基因鉴定. 中国农业科学, 2017,50:3247-3258.
Zhang J J, Zhan J P, Liu Q Y, Shi J Q, Wang X F, Liu G H, Wang H Z . QTL mapping and integration as well as candidate genes identification for plant height in rapeseed (Brassica napus L.). Sci Agric Sin, 2017,50:3247-3258 (in Chinese with English abstract).
[19] Wu Y, Bhat P R, Close T J, Lonardi S . Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet, 2008,4:e1000212.
doi: 10.1371/journal.pgen.1000212 pmid: 2556103
[20] Silva Lda C, Wang S, Zeng Z B . Composite interval mapping and multiple interval mapping: procedures and guidelines for using Windows QTL Cartographer. Methods in Mol Biol, 2012,871:75-119.
doi: 10.1007/978-1-61779-785-9_6 pmid: 22565834
[21] Bolger A M, Lohse M, Usadel B . Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014,30:2114-2120.
doi: 10.1093/bioinformatics/btu170 pmid: 24695404
[22] Li H, Durbin R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009,25:1754-1760.
pmid: 2705234
[23] Li H . A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics, 2011,27:2987-2993.
doi: 10.1093/bioinformatics/btr509 pmid: 21903627
[24] Pritchard J K, Stephens M, Donnelly P . Inference of population structure using multilocus genotype data. Genetics, 2000,155:945-959.
[25] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S . TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23:2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 20320202020202020202020
[26] Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C ,Samans B Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P.Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953.
[27] Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A . Circos: an information aesthetic for comparative genomics. Genome Res, 2009,19:1639-1645.
doi: 10.1101/gr.092759.109 pmid: 19541911
[28] Khan S, Anwar S, Kuai J, Noman A, Shahid M, Din M, Ali A, Zhou G . Alteration in yield and oil quality traits of winter rapeseed by lodging at different planting density and nitrogen rates. Sci Rep, 2018,8:634.
doi: 10.1038/s41598-017-18734-8 pmid: 29330468
[29] Kuai J, Sun Y, Zuo Q, Huang H, Liao Q, Wu C, Lu J, Wu J, Zhou G . The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing. Sci Rep, 2015,5 doi: 10.1038/srep18835.
doi: 10.1038/srep18835 pmid: 26686007
[30] Wang Y, Li J . Molecular basis of plant architecture. Annu Rev Plant Biol, 2008,59:253-279.
doi: 10.1109/83.760334 pmid: 18444901
[31] 魏大勇, 崔艺馨, 梅家琴, 汤青林, 李加纳, 钱伟 . 油菜种子含油量GWAS分析及位点整合系统构建. 作物学报, 2018,44:1311-1319.
Wei D Y, Cui Y X, Mei J Q, Tang Q L, Li J N, Qian W . Genome-wide association study on seed oil content in rapeseed and construction of integration system for oil content loci. Acta Agron Sin, 2018, 44:1311-1319 (in Chinese with English abstract).
[32] N’Diaye A, Haile J K, Fowler D B, Ammar K, Pozniak C J . Effect of co-segregating markers on high-density genetic maps and prediction of map expansion using machine learning algorithms. Front Plant Sci, 2017,8, doi: 10.3389/fpls.2017.01434.
doi: 10.3389/fpls.2017.01434 pmid: 5572363
[33] Bai Z Y, Han X K, Liu X J, Li Q Q, Li J L . Construction of a high-density genetic map and QTL mapping for pearl quality- related traits in Hyriopsis cumingii. Sci Rep, 2016,6, doi: 10.1038/srep32608.
doi: 10.1038/srep32608 pmid: 5009340
[34] Lee M, Xia J H, Zou Z, Ye J, Rahmadsyah, Alfiko Y , Jin J, Lieando J V, Purnamasari M I, Lim C H, Suwanto A, Wong L, Chua N, Yue G H. A consensus linkage map of oil palm and a major QTL for stem height. Sci Rep, 2015,5, doi: 10.1038/srep08232.
doi: 10.1038/srep08232 pmid: 4316154
[35] Rastas P, Calboli F C, Guo B, Shikano T, Merila J . Construction of ultradense linkage maps with Lep-MAP2: stickleback F2 recombinant crosses as an example. Genome Biol Evol, 2015,8:78-93.
doi: 10.1093/gbe/evv250 pmid: 4758246
[36] Maroso F, Hermida M, Millan A, Blanco A, Saura M, Fernandez A, Dalla Rovere G, Bargelloni L, Cabaleiro S, Villanueva B, Bouza C, Martínez P . Highly dense linkage maps from 31 full-sibling families of turbot (Scophthalmus maximus) provide insights into recombination patterns and chromosome rearrangements throughout a newly refined genome assembly. DNA Res, 2018,25:439-450.
[37] 李慧慧, 张鲁燕, 王建康 . QTL作图研究中若干常见问题的分析与解答. 作物学报, 2010,36:918-931.
Li H H, Zhang L Y, Wang J K . Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin, 2010, 36:918-931 (in Chinese with English abstract).
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[3] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[4] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[5] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[6] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[7] ZHAO Hai-Han, LIAN Wang-Min, ZHAN Xiao-Deng, XU Hai-Ming, ZHANG Ying-Xin, CHENG Shi-Hua, LOU Xiang-Yang, CAO Li-Yong, HONG Yong-Bo. Genetic dissection of the bacterial blight disease resistance in super hybrid rice RILs using genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(1): 121-137.
[8] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[9] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[10] MA Juan, CAO Yan-Yong, LI Hui-Yong. Genome-wide association study of ear cob diameter in maize [J]. Acta Agronomica Sinica, 2021, 47(7): 1228-1238.
[11] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[12] CHEN Can, NONG Bao-Xuan, XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting, YANG Xing-Hai. Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi [J]. Acta Agronomica Sinica, 2021, 47(6): 1114-1123.
[13] LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798.
[14] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
[15] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!