Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (8): 1270-1278.doi: 10.3724/SP.J.1006.2019.84129

• RESEARCH NOTES • Previous Articles     Next Articles

Characteristics and expression analysis of BoPINs family genes in Brassica oleracea

WANG Yu-Kui1,ZHANG He-Cui1,BAI Xiao-Jing1,LIAN Xiao-Ping2,SHI Song-Mei2,LIU Qian-Ying1,ZUO Tong-Hong1,ZHU Li-Quan1,*()   

  1. 1 College of Agriculture and Biotechnology, Southwest University, Chongqing 400715, China
    2 College of Horticulture and Gardening, Southwest University, Chongqing 400100, China
  • Received:2018-10-15 Accepted:2019-04-15 Online:2019-08-12 Published:2019-04-26
  • Contact: Li-Quan ZHU E-mail:zhuliquan@swu.edu.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31572127);the Basic Research Fund of the Central University(XDJK2017C023)

Abstract:

In order to explore the number and expression of the BoPINs gene family participating in self-incompatibilty of Brassica, their expression after self-pollination and cross-pollination were detected by transcriptome analysis, and the corresponding gene structure, phylogenetic tree and expression patterns of the family were further analyzed by bioinformatics. This gene family contained 5-9 exons and 4-8 introns. The amino acid of the encoding protein residues were between 350 and 650 and had molecular weights ranging from 38 kD to 70 kD. Except that BoPIN5 and BoPIN8 did not contain internal hydrophilic cytoplasmic regions, the remaining six BoPINs proteins contained a hydrophobic region at both ends and an internal hydrophilic ring, showing they located on membrane. The evolutionary analysis indicated that BoPINs were closely related to the BrPINs and the AtPINs gene family. Chromosome localization analysis indicated that BoPIN1-1, BoPIN3-1, BoPIN3-2, and BoPIN6 members of the family were linked to S-loucs to different degrees. Tissue-specific expression analysis indicated that BoPIN1-1, BoPIN1-2, BoPIN2, BoPIN3-1, BoPIN3-2, BoPIN4, BoPIN6, BoPIN7-1, and BoPIN7-2 had higher expression levels in the stigma. Data expression profiling and fluorescence quantitative analysis indicated that six of the eight BoPINs genes were down-regulated after self-pollination. All these results indicate that six members of the eight BoPIN gene family members on the membrane may participate in the self-incompatibility response of Brassica oleracea in a negative regulatory manner.

Key words: Brassica oleracea, auxin, self-pollination, BoPINs family, self-incompatibility

Table 1

Information about protein of the PIN-FORMED family in Brassica oleracea"

蛋白名称
Protein name
转录组号
Transcriptome No.
染色体定位
Chromosome localization
氨基酸
长度
Amino acid length
等电点
Isoelectric point (pI)
相对分子量
Molecular weight (kD)
平均亲水指数
Average hydropathic index
不稳定系数
Instability coefficient
亚细胞定位
Subcellular localization
BoPIN1-1 Bo2g080660 C6 617 9.2 66.50 0.121 39.70 Cell membrane
BoPIN1-2 Bo6g116850 C6 619 9.1 66.91 0.075 43.50 Cell membrane
BoPIN2 Bo3g019460 C3 652 9.2 70.46 0.058 40.66 Cell membrane
BoPIN3-1 Bo6g094450 C6 642 8.6 69.63 0.138 40.11 Cell membrane
BoPIN3-2 Bo6g112590 C6 635 8.2 68.40 0.184 40.11 Cell membrane
BoPIN4 Bo2g134160 C2 599 7.2 65.03 0.265 36.77 Cell membrane
BoPIN5 Bo9g165420 C9 362 9.4 39.71 0.702 44.60 Endoplasmic reticulum
BoPIN6 Bo6g121080 C6 567 9.2 61.69 0.409 37.67 Endoplasmic reticulum
BoPIN7-1 Bo6g112720 C6 577 8.5 63.09 0.272 39.44 Cell membrane
BoPIN7-2 Bo7g056420 C7 603 6.8 65.47 0.239 31.78 Cell membrane
BoPIN8 Bo9g163100 C9 348 6.2 38.22 0.703 36.56 Endoplasmic reticulum

Fig. 1

Phylogenetic tree and gene structure of BoPINs in Brassica oleracea The phylogenetic tree is constructed with MEGA6.0 software on the left and the gene structure map of the BoPINs family on the right."

Fig. 2

Phylogenetic tree of BoPINs gene family in Brassica oleracea"

Fig. 3

Distribution of BoPINs family in Brassica oleracea chromosome"

Fig. 4

Expression patterns of BoPINs gene family after self-pollination and cross-pollination"

Fig. 5

Expression analysis of BoPINs gene family after self-pollination and cross-pollination SI: self-pollination; CP: cross-pollination."

Table 2

Predicted cis-element in the promoter of the BoPINs genes"

基因
Gene
生长素
响应元件
Auxin response element
水杨酸
响应元件
Salicylic acid response element
脱落酸
响应元件
Abscisic acid response element
胁迫响应元件
Stress
response
element
赤霉素
响应元件
Gibberellin response element
厌氧诱导元件
Anaerobic induction
element
光响应元件
Light responsive element
茉莉酸甲酯
响应元件
MeJA response element
BoPIN1-1 2 2 1 1 1 7 1
BoPIN1-2 1 1 2 1 1 6 2
BoPIN2 1 1 1 1 8 2
BoPIN3-1 1 2 2 1 5
BoPIN3-2 1 2 1 2 9
BoPIN4 2 1 2 12 12 2
BoPIN5 1 3 1 1 5 2
BoPIN6 4 1 1 9 1
BoPIN7-1 1 2 1 1 14
BoPIN7-2 1 4 1 2 2 1
BoPIN8 2 1 1 1 1 9 2

Fig. 6

Heat-map of members of the BoPINs gene family in different tissues after self-pollination time"

Fig. 7

Changes in mRNA content of auxin biosynthesis key enzyme TAA1 after stigma pollination"

[1] Vieten A, Sauer M, Brewer P B, Friml J . Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci, 2007,12:160-168.
doi: 10.1016/j.tplants.2007.03.006
[2] Petrášek J, Friml J . Auxin transport routes in plant development. Development, 2009,136:2675-2688.
doi: 10.1242/dev.030353
[3] Reinhardt D, Pesce E R, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J . Regulation of phyllotaxis by polar auxin transport. Nature, 2003,426:255-260.
[4] Okada K, Ueda J, Komaki M K, Bell C J, Shimura Y . Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell, 1991,3:677-684.
doi: 10.2307/3869249
[5] Hall I V, Forsyth F R . Production of ethylene by flowers following pollination and treatments with water and auxin. Can J Bot, 1967,45:1163-1166.
doi: 10.1139/b67-121
[6] Safavian D, Zayed Y, Indriolo E, Chapman L, Ahmed A, Goring D R . RNA silencing of exocyst genes in the stigma impairs the acceptance of compatible pollen in Arabidopsis. Plant Physiol, 2015,169:2526-2538.
[7] Zhang C, Li G, Chen T, Feng B, Fu W, Yan J, Islam M R . Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice, 2018,11:14, doi: 10.1186/s12284- 018-0206-5.
[8] Hasenstein K H, Zavada M S . Auxin modification of the incompatibility response in Theobroma cacao. Physiol Planta, 2001,112:113-118.
[9] Tantikanjana T, Nasrallah J B . Non-cell-autonomous regulation of crucifer self-incompatibility by Auxin Response Factor ARF3. Proc Natl Acad Sci USA, 2012,109:19468-19473.
doi: 10.1073/pnas.1217343109
[10] Vanneste S, Friml J . Auxin: a trigger for change in plant development. Cell, 2009,136:1005-1016.
doi: 10.1016/j.cell.2009.03.001
[11] Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J . Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 2003,115:591-602.
doi: 10.1016/S0092-8674(03)00924-3
[12] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262
[13] 王占军, 杨立伟, 徐忠东, 欧祖蓝, 袁华玲, 任意飞 . 麻疯树PIN基因家族的鉴定与生物信息学分析. 分子植物育种, 2015,13:1111-1122.
Wang Z J, Yang L W, Xu Z D, Ou Z L, Yuan H L, Ren Y F . Identification and bioinformatics analysis of the PIN gene family of Jatropha curcas. Mol Plant Breed, 2015,13:1111-1122 (in Chinese with English abstract).
[14] Liu Y, Wei H . Genome-wide identification and evolution of the PIN-FORMED (PIN) gene family in Glycine max. Genome, 2017,60:564-571.
[15] Křeček P, Skůpa P, Libus J, Naramoto S, Tejos R, Friml J . The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol, 2009,10:249, doi: 10.1186/gb-2009-10-12-249.
doi: 10.1186/gb-2009-10-12-249
[16] Bendtsen J D, Jensen L J, Blom N, Heijne G, Brunak S . Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel, 2004,17:349-356.
doi: 10.1093/protein/gzh037
[17] Mravec J, Skůpa P, Bailly A, Hoyerova K, Krecek P, Bielach A, Petrasek J, Zhang J, Gaykova V, Stierhof Y D, Rolcik J, Stierhof D, Luschnig C, Benkova E, Zazimalova E, Geisler M, Friml J . Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature, 2009,459:1136-1140.
[18] Friml J . Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur J Cell Biol, 2010,89:231-235.
doi: 10.1016/j.ejcb.2009.11.003
[19] Baker R P, Hasenstein K H, Zavada M S . Hormonal changes after compatible and incompatible pollination in Theobroma cacao L. HortScience, 1997,32:1231-1234.
[20] Ono K, Morimoto T, Akagi T, Wunsch A, Tao R . Genome re-sequencing of diverse sweet cherry (Prunus avium) individuals reveals a modifier gene mutation conferring pollen-part self- compatibility. Plant Cell Physiol, 2018,59:1265-1275.
[21] Zhou Z Y, Zhang C G, Wu L, Zhang C G, Chai J, Wang M, Jha A, Jia P F, Cui S J, Yang M, Chen R . Functional characterization of the CKRC1/TAA1 gene and dissection of hormonal actions in the Arabidopsis root. Plant J, 2011,66:516-527.
[22] Kakei Y, Nakamura A, Yamamoto M, Ishida Y, Yamazaki C, Sato A, Nara M N, Soeno K, Shimada Y . Biochemical and chemical biology study of rice OsTAR1 revealed that tryptophan aminotransferase is involved in auxin biosynthesis: identification of a potent OsTAR1 inhibitor, pyruvamine 2031. Plant Cell Physiol, 2017,58:598-606.
[23] Cazzonelli C I, Vanstraelen M, Simon S, Yin K, Arthur A, Nisar N, Tarle G, Cuttriss A J, Searle L R, Mathesius U, Masle J, Friml J, Pogson B J . Role of the Arabidopsis PIN6 auxin transporter in auxin homeostasis and auxin-mediated development. PLoS One, 2013,8:e70069.
doi: 10.1371/journal.pone.0070069
[24] 齐国辉, 徐继忠, 张玉星 . 鸭梨自交不亲和性与花柱内源激素关系的研究. 河北农业大学学报, 2007,30(1):31-34.
Qi G H, Xu J Z, Zhang Y X . Study on the relationship between self-incompatibility and the endogenous hormones in style of Yali. J Hebei Agric Univ, 2007,30(1):31-34 (in Chinese with English abstract).
[25] Bavrina T V, Milyaeva E L, Machácčková I, Pustovoitova T N, Gurko N A, Kasumova I V, Zhdanova N E . Effect of phytohormone biosynthesis genes (ipt and iaaM+ iaaH) on the sexual reproduction of transgenic tobacco plants. Russ J Plant Physiol, 2002,49:484-491.
doi: 10.1023/A:1016355824539
[26] Chen D, Zhao J . Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum. Physiol Planta, 2008,134:202-215.
[27] Vieten A, Vanneste S, Wiśniewska J, Benkova E, Benjamins R, Beeckman T, Luschnig C, Friml J . Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development, 2005,132:4521-4531.
doi: 10.1242/dev.02027
[28] Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B . The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 2005,433:39-44.
[29] Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh Y S, Amasino R, Scheres B . ThePLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell, 2004,119:109-120.
[30] Geisler M, Blakeslee J J, Bouchard R, Lee O R, Vincenzetti V, Bandyopadhyay A, Titapiwatanakun B, Peer W A, Bailly A, Richard E L, Ejendal K F K, Smith A P, Baroux C, Grossniklaus U, Muller A, Hrycyna C A, Dudler R, Murphy A S, Murphy A S . Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J, 2005,44:179-194.
doi: 10.1111/j.1365-313X.2005.02519.x
[31] Petrasek J, Mravec J, Bouchard R, Blakeslee J J, Abas M, Seifertova D, Wisniewska J, Tadele Z, Kubes M, Covanova M, Dhonukshe P, Skupa P, Benkova E, Perry L, Krecek P, Lee O R, Fink G R, Geisler M, Murphy A S, Luschnig C, Zazimalova E, Friml J . PIN proteins perform a rate-limiting function in cellular auxin efflux. Science, 2006,312:914-918.
doi: 10.1126/science.1123542
[32] Lavenus J, Guyomarc’h S, Laplaze L . PIN transcriptional regulation shapes root system architecture. Trends Plant Sci, 2016,21:175-177.
doi: 10.1016/j.tplants.2016.01.011
[33] Simonini S, Bencivenga S, Trick M . Auxin-induced modulation of ETTIN activity orchestrates gene expression in Arabidopsis. Plant Cell, 2017,29:1864-1882.
doi: 10.1105/tpc.17.00389
[34] Geldner N, Friml J, Stierhof Y D, Jurgens G, Palme K . Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature, 2001,413:425-428.
[35] Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jurgens G . The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell, 2003,112:219-230.
doi: 10.1016/S0092-8674(03)00003-5
[36] Jaillais Y, Fobis-Loisy I, Miege C, Rollin C, Gaude T . AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature, 2006,443:106-109.
[37] Vanoosthuyse V, Tichtinsky G, Dumas C, Gaude T, Cock J M . Interaction of calmodulin, a sorting nexin and kinase-associated protein phosphatase with the Brassica oleracea S locus receptor kinase. Plant Physiol, 2003,133:919-929.
[38] Roux M, Zipfel C. Receptor kinase interactions: complexity of signaling. In: Receptor-like Kinases in Plants. Springer, 2012. pp 145-172.
[39] Michniewicz M, Zago M K, Abas L, Weijers D, Schweighofer A, Meskiene M G, Ohno C, Zhang J, Huang F, Schwab R, Weigel D, Meyerowitz E M, Luschnig C, Offringa R, Friml J . Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell, 2007,130:1044-1056.
doi: 10.1016/j.cell.2007.07.033
[1] ZHANG Yi-Zhong, ZENG Wen-Yi, DENG Lin-Qiong, ZHANG He-Cui, LIU Qian-Ying, ZUO Tong-Hong, XIE Qin-Qin, HU Deng-Ke, YUAN Chong-Mo, LIAN Xiao-Ping, ZHU Li-Quan. Codon usage bias analysis of S-locus genes SRK, SLG, and SP11/SCR in Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(5): 1152-1168.
[2] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[3] LI Wen-Lan, LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong. A study of expression pattern of auxin response factor family genes in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1138-1148.
[4] ZUO Xiang-Jun, FANG Peng-Peng, LI Jia-Na, QIAN Wei, MEI Jia-Qin. Characterization of aphid-resistance of a hairy wild Brassica oleracea taxa, B. incana [J]. Acta Agronomica Sinica, 2021, 47(6): 1109-1113.
[5] CHEN Miao, XIE Sai, WANG Chao-Zhi, LI Yan-Long, ZHANG Xian-Long, MIN Ling. Mechanism of GhPIF4 regulating anther abortion under high temperature stress in cotton [J]. Acta Agronomica Sinica, 2020, 46(9): 1368-1379.
[6] Tong-Hong ZUO, He-Cui ZHANG, Qian-Ying LIU, Xiao-Ping LIAN, Qin-Qin XIE, Deng-Ke HU, Yi-Zhong ZHANG, Yu-Kui WANG, Xiao-Jing BAI, Li-Quan ZHU. Molecular cloning and expression analysis of BoGSTL21 in self-incompatibility Brasscia oleracea [J]. Acta Agronomica Sinica, 2020, 46(12): 1850-1861.
[7] Fang YUE,Lei WANG,Yan-Gui CHEN,Xiao-Xia XIN,Qin-Fei LI,Jia-Qin MEI,Zhi-Yong XIONG,Wei QIAN. A new method of synthesizing Brassica napus by crossing B. oleracea with the allohexaploid derived from hybrid between B. napus and B. rapa [J]. Acta Agronomica Sinica, 2019, 45(2): 188-195.
[8] Xiao-Jing BAI,Xiao-Ping LIAN,Yu-Kui WANG,He-Cui ZHANG,Qian-Ying LIU,Tong- Hong ZUO,Yi-Zhong ZHANG,Qin-Qin XIE,Deng-Ke HU,Xue-Song REN,Jing ZENG,Shao-Lan LUO,Min PU,Li-Quan ZHU. Cloning and analysis of BoCDPK14 in self-incompatibility Brasscia olerace [J]. Acta Agronomica Sinica, 2019, 45(12): 1773-1783.
[9] Kun GAO,Ying-Peng HUA,Hai-Xing SONG,Chun-Yun GUAN,Zhen-Hua ZHANG,Ting ZHOU. Identification and Bioinformatics Analysis of the PIN Family Gene in Brassica napus [J]. Acta Agronomica Sinica, 2018, 44(9): 1334-1346.
[10] Xiao-Yan DING,Juan ZHAO,Shan-Shan QIAN,Xing-Ying YAN,Yan PEI. Improving Fiber Yield and Quality in the Short Season Cotton Variety Jinmian 11 by Introducing FBP7::iaaM [J]. Acta Agronomica Sinica, 2018, 44(8): 1152-1158.
[11] Shao-Lan LUO,Xiao-Ping LIAN,Min PU,Xiao-Jing BAI,Yu-Kui WANG,Jing ZENG,Song-Mei SHI,He-Cui ZHANG,Li-Quan ZHU. Molecular Cloning, Location and Expression Analysis of Brasscia oleracea Zinc Finger Protein Transcription Factor BoC2H2 [J]. Acta Agronomica Sinica, 2018, 44(11): 1650-1660.
[12] Yun-Fei LIANG, Lin-Cheng ZHANG, Quan-Ming PU, Zhen-Ze LEI, Song-Mei SHI, Yu-Peng JIANG, Xue-Song REN, Qi-Guo GAO. Cloning of BoLH27 Gene from Cabbage and Phenotype Analysis of Transgenic Cabbage [J]. Acta Agronomica Sinica, 2018, 44(03): 397-404.
[13] Min PU, Shao-Lan LUO, Xiao-Ping LIAN, He-Cui ZHANG, Xiao-Jing BAI, Yu-Kui WANG, Tong-Hong ZUO, Qi-Guo GAO, Xue-Song REN, Li-Quan ZHU. Cloning and Expression Analysis of BoSPI Induced by Self-pollination in Brassica oleracea L. var. capitata [J]. Acta Agronomica Sinica, 2018, 44(02): 177-184.
[14] ZHANG Yang,HU Zhong-Ying,ZHAO Yue-Ming,LI Na,XIE Li-Nan. DNA Methylation Dynamic Analysis of Self Compatible Line and Self-Incompatible Line of Brassica oleracea var. acephala at Seed Germination Stage [J]. Acta Agron Sin, 2016, 42(04): 532-539.
[15] WANG Bo,CAO Hong-Li,HUANG Yu-Ting,HU Yu-Rong,QIAN Wen-Jun,HAO Xin-Yuan, WANG Lu,YANG Ya-Jun,WANG Xin-Chao. Cloning and Expression Analysis of Auxin Efflux Carrier Gene CsPIN3 in Tea Plant (Camellia sinensis) [J]. Acta Agron Sin, 2016, 42(01): 58-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!