Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (11): 1678-1689.doi: 10.3724/SP.J.1006.2020.04036
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Yan-Hua1,2(), JIAN Hong-Jiu1, QIU Xiao2, LI Jia-Na1,*()
[1] | He Y T, Tu J X, Fu T D, Li D R, Chen B Y. Genetic diversity of germplasm resources of Brassica campestris L. in China by RAPD markers. Acta Agron Sin, 2002,28:697-703. |
[2] | Chen X, Wu J, Liu K. Genetic diversity comparison between spring and weak-winter Brassica napus cultivars using single- locus SSR markers. Chin J Oil Crop Sci, 2010,32:6-13. |
[3] | Wang J L, Chang T J, Cheng H H, Fang H L. Study on character evolution and cladistic taxonomy of wild rapes (Brassica campestris and B. juncea) in Tibet. J Plant Resour Environ, 2008,17:10-17. |
[4] | Chrungu B, Verma N, Mohanty A, Pradhan A, Shivanna K R. Production and characterization of interspecific hybrids between Brassica maurorum and crop Brassicas. Theor Appl Genet, 1999,98:608-613. |
[5] | Sensoz S, Angin D, Yorgun S. Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.): fuel properties of bio-oil. Biomass Bioenergy, 2000,19:271-279. |
[6] | Rahman M H, Joersbo M, Poulsen M H. Development of yellow-seededBrassica napus of double low quality. Plant Breed, 2001,120:473-478. |
[7] | Rahman M H. Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breed, 2001,120:463-472. |
[8] |
Whetten R W, Mackay J J, Sederoff R R. Recent advances in understanding lignin biosynthesis. Plant Biol, 1998,49:585-609.
doi: 10.1007/s10535-005-0053-2 |
[9] |
Meng J L, Shi S W, Gan L, Li Z Y, Qu X S. The production of yellow-seeded Brassica napus(AACC) through crossing interspecific hybrids of B. campestris (AA) and B. carinata (BBCC) with B. napus. Euphytica, 1998,103:329-333.
doi: 10.1023/A:1018646223643 |
[10] |
Mukhlesur R M, Hirata Y. Homology of seed coat color specific marker of B. juncea with brown seeded cultivar of B. rapa. J Biol Sci, 2004,4:731-734.
doi: 10.3923/jbs.2004.731.734 |
[11] | Shirzadegan M, Röbbelen G. Influence of seed color and hull proportion on quality properties of seeds in Brassica napus L. Fett Seifen Anstrichmittel, 1985,87:235-237. |
[12] | Akhov L, Ashe P, Tan Y F, Datla R, Selvaraj G. Proanthocyanidin biosynthesis in the seed coat of yellow-seeded, canola quality Brassica napus YN01-429 is constrained at the committed step catalyzed by dihydroflavonol 4-reductase. Bot-botanique, 2009,87:616-625. |
[13] |
Simbaya J, Slominski B A, Rakow G, Campbell L D, Downey R K, Bell J M. Quality characteristics of yellow-seeded Brassica seed meals: protein, carbohydrate, and dietary fiber components. J Agric Food Chem, 1995,43:2062-2066.
doi: 10.1021/jf00056a020 |
[14] |
Ren Y J, He Q, Ma X M, Zhang L G. Characteristics of color development in seeds of brown- and yellow-seeded heading Chinese cabbage and molecular analysis of Brsc, the candidate gene controlling seed coat color. Front Plant Sci, 2017,8:1410-1418.
pmid: 28855913 |
[15] | Ye X, Li J N, Tang Z L. Difference of seed coat color between black-and yellow-seeded in B. napus with seed development changes of anthocyanin, phenylalanine and phenylalaine ammonia-lyase and their correlation analyses. Chin J Oil Crop Sci, 2002,28:638-643. |
[16] |
Fu F Y, Liu L Z, Chai Y R, Chen L, Yang T, Meng Y J, Ma A F, Yan X Y, Zhang Z S, Li J N. Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome, 2007,50:840-854.
doi: 10.1139/g07-068 pmid: 17893725 |
[17] |
Schwetka A. Inheritance of seed colour in turnip rape (Brassica campestris L.). Theor Appl Genet, 1982,62:161-169.
doi: 10.1007/BF00293352 pmid: 24270566 |
[18] |
Vera C L, Woods D L, Downey R K. Inheritance of seed coat color in Brassica juncea. Can J Plant Sci, 1979,59:635-637.
doi: 10.4141/cjps79-100 |
[19] |
Li X, Chen L, Hong M, Zhang Y, Zu F, Wen J, Yi B, Ma C Z, Sheng J X, Tu J X, Fu T D. A large insertion in bHLH transcription factorBrTT8 resulting in yellow seed coat in Brassica rapa. PLoS One, 2012,7:e44145.
doi: 10.1371/journal.pone.0044145 pmid: 22984469 |
[20] |
Dixon R A, Xie D Y, Sharma S B. Proanthocyanidins—a final frontier in flavonoid research. New Phytol, 2005,165:9-28.
doi: 10.1111/j.1469-8137.2004.01217.x pmid: 15720617 |
[21] |
Alois H D, Klíma , Miroslav K, Viehmannová I, Milan O U, Eloy F C, Miroslava V. Efficient resynthesis of oilseed rape (Brassica napus L.) from crosses of winter types B. rapa × B. oleracea via simple ovule culture and early hybrid verification. Plant Cell Tissue Organ Cult, 2015,120:191-201.
doi: 10.1007/s11240-014-0593-2 |
[22] |
Deynze A E V, Landry B S, Pauls K P. The identification of restriction fragment length polymorphisms linked to seed colour genes inBrassica napus. Genome, 1995,38:534-542.
pmid: 18470187 |
[23] |
Zhang Y, Li X, Ma C Z, Shen J X, Chen B Y, Tu J X, Fu T D. The inheritance of seed color in a resynthesized Brassica napus line No. 2127-17 including a new epistatic locus. Genes Genomics, 2009,31:413-419.
doi: 10.1007/BF03191854 |
[24] |
Rahman M, Mcvetty P B E, Li G. Development of SRAP, SNP and multiplexed SCAR molecular markers for the major seed coat color gene inBrassica rapa L. Theor Appl Genet, 2007,115:1101-1107.
pmid: 17846742 |
[25] | Öztürk Ö. Effects of source and rate of nitrogen fertilizer on yield, yield components and quality of winter rapeseed (Brassica napus L.). Chilean J Agric Res, 2010,70:132-141. |
[26] |
Ahmed S U, Zuberi M I. Effects of seed size on yield and some of its components in rapeseed,Brassica campestris L. var Toria. Crop Sci, 1973,13:119-120.
doi: 10.2135/cropsci1973.0011183X001300010039x |
[27] |
Xiao L, Zhao Z, Du D, Yao Y M, Xu L, Tang G Y. Genetic characterization and fine mapping of a yellow-seeded gene in Dahuang (a Brassica rapa landrace). Theor Appl Genet, 2012,124:903-909.
doi: 10.1007/s00122-011-1754-x |
[28] |
Yan M L. Cloning and SNP analysis of TT1 gene in Brassica juncea. Acta Agron Sin, 2010,36:1634-1641.
doi: 10.3724/SP.J.1006.2010.01634 |
[29] |
Lian J P, Lu X C, Yin N W, Ma L J, Lu J, Liu X, Li J N, Lu J, Lei B, Wang R, Chai Y R. Silencing of BnTT1 family genes affects seed flavonoid biosynthesis and alters seed fatty acid composition in Brassica napus. Plant Sci, 2017,254:32-47.
doi: 10.1016/j.plantsci.2016.10.012 pmid: 27964783 |
[30] |
Wang Y H, Xiao L, Guo S M, An F Y, Du D Z. Fine mapping and whole-genome resequencing identify the seed coat color gene in Brassica rapa. PLoS One, 2016,11:e0166464.
doi: 10.1371/journal.pone.0166464 pmid: 27829069 |
[31] | Wang Y H, Xiao L, Dun X L, Liu K D, Du D Z. Characterization of the BrTT1 gene responsible for seed coat color formation in Dahuang(Brassica rapa L. landrace). Mol Breed, 2017,37:137-150. |
[32] | Yan M, Wei G, Pan X H, Ma H L. A method suitable for extracting genomic DNA from animal and plant-modified CTAB method. J Anhui Agric Sci, 2008,36:500-504. |
[33] | Li J G, Han G Y, Li X M, Sun J J, Song K J, Zhang T. Improvement of TA cloning method to facilitate direct directional cloning of PCR products. Appl Mechan Materials, 2014,565:3-8. |
[34] | Ma L J, Feng Y, Jiang L P, Shen M, Chai Y R. Modification of pFGC5941 and construction of RNAi vector of Brassica transparent Testa 1 gene(TT1) family. J Agric Biotechnol, 2010,18:1189-1190. |
[35] |
Cardoza V, Stewart C N. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep, 2003,21:599-604.
doi: 10.1007/s00299-002-0560-y pmid: 12789436 |
[36] |
Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative CT method. Nat Protocol, 2008,3:1101-1108.
doi: 10.1038/nprot.2008.73 |
[37] | 王艳花. 大黄油菜粒色性状候选基因的定位克隆及功能分析. 青海大学博士学位论文, 青海西宁, 2017. |
Wang Y H. Positional Cloning and Functional Study of Seed Coat Color Gene in Dahuang (Brassica rapa L. landrace) . PhD Dissertation of Qinghai University, Xining, Qinghai, China, 2017 (in Chinese with English abstract). | |
[38] |
Feinbaum R L, Ausubel F M. Transcriptional regulation of theArabidopsis thaliana chalcone synthase gene. Mol Cell Biol, 1988,8:1985-1992.
pmid: 3386631 |
[39] |
Marek M, Sebastian K, Takayuki T, Federico M G, Olivia W, Malcolm M C, Alisdair R F, Björn U, Zoran N, Staffan P. PlaNet: combined sequence and expression comparisons across plant networks derived from seven species. Plant Cell, 2011,23:895-910.
doi: 10.1105/tpc.111.083667 pmid: 21441431 |
[40] |
Hartmann U, Valentine W J, Christie J M, Hays J, Jenkins G I, Weisshaar B. Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system. Plant Mol Biol, 1998,36:741-754.
doi: 10.1023/a:1005921914384 pmid: 9526507 |
[41] |
Li X, Bonawitz N D, Weng J K, Clint C. The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids. Plant Cell, 2010,22:1620-1632.
doi: 10.1105/tpc.110.074161 pmid: 20511296 |
[42] |
Jiang W B, Yin Q G, Wu R R, Zheng G S, Liu J Y, Dixon R A, Pang Y Z. Role of a chalcone isomerase-like protein in flavonoid biosynthesis inArabidopsis thaliana. J Exp Bot, 2015,66:7165-7179.
pmid: 26347569 |
[43] | Pelletier M K. Molecular and Biochemical Genetics of 2-oxoglutarate-dependent Dioxygenases Required for Flavonoid Biosynthesis in Arabidopsis thaliana. PhD Dissertation of Virginia Tech, Blacksburg, Virginia, America, 1997. |
[44] |
Han Y P, Sornkanok V, Ruth E S G, Sergio R M, Zheng D M, Anatoli V L, Schuyler S K. Ectopic expression of apple F3'H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress. Plant Physiol, 2010,153:806-820.
doi: 10.1104/pp.109.152801 pmid: 20357139 |
[45] |
Abrahams S, Tanner G J, Ashton L A R. Identification and biochemical characterization of mutants in the proanthocyanidin pathway inArabidopsis. Plant Physiol, 2002,130:561-576.
pmid: 12376625 |
[46] |
Sato S, Tabata S. The complete genome sequence of Arabidopsis thaliana. Tanpakushitsu Kakusan Koso, 2001,46:61-65.
pmid: 11193333 |
[47] |
Matsui K, Tanaka H, Ohme-Takagi M. Suppression of the biosynthesis of proanthocyanidin in Arabidopsis by a chimeric PAP1 repressor. Plant Biotechnol J, 2004,2:487-493.
doi: 10.1111/j.1467-7652.2004.00094.x pmid: 17147621 |
[48] |
Gonzalez A, Zhao M, Leavitt J M, Lloyd A M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J, 2008,53:814-827.
doi: 10.1111/j.1365-313X.2007.03373.x pmid: 18036197 |
[49] |
Appelhagen I, Lu G H, Huep G, Schmelzer E, Weisshaar B, Sagasser M. TRANSPARENT TESTA1 interacts with R2R3 MYB factors and affects early and late steps of flavonoid biosynthesis in the endothelium of Arabidopsis thaliana seeds. Plant J, 2011,67:406-419.
doi: 10.1111/j.1365-313X.2011.04603.x pmid: 21477081 |
[50] | Quattrocchio F, Baudry A, Lepiniec L, Grotewold E. The regulation of flavonoid biosynthesis. Sci Flavonoids, 2006,179:79-86. |
[51] | Shijun S. The study of seed coat color in yellow-seeded Brassica napus. J Huazhong Agric, 2003,22:608-612. |
[52] |
Baudry A, Heim M A, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J, 2010,39:366-380.
pmid: 15255866 |
[53] |
Su F, Hu J, Zhang Q L, Luo Z R. Isolation and characterization of a basic Helix-Loop-Helix transcription factor gene potentially involved in proanthocyanidin biosynthesis regulation in persimmon (Diospyros kaki Thunb.). Sci Hortic, 2012,136:115-121.
doi: 10.1016/j.scienta.2012.01.013 |
[54] |
Xu W J, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci, 2015, 176-185.
doi: 10.1016/s1360-1385(99)01405-3 pmid: 10322557 |
[55] |
Wendell D L, Anoumid V, Gurbaksh S. The gene encoding dihydroflavonol 4-reductase is a candidate for the anthocyaninless locus of rapid cycling Brassica rapa(Fast Plants Type). PLoS One, 2016,11:e0161394.
doi: 10.1371/journal.pone.0161394 pmid: 27548675 |
[56] |
Ahmed N U, Park J I, Jung H J, Yang T J, Hur Y K, Nou I S. Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa. Gene, 2014,550:46-55.
doi: 10.1016/j.gene.2014.08.013 pmid: 25108127 |
[57] |
Zhang K, Lu K, Qu C M, Liang Y, Wang R, Chai Y R, Li J N. Gene silencing of BnTT10 family genes causes retarded pigmentation and lignin reduction in the seed coat of Brassica napus. PLoS One, 2013,8:e61247.
pmid: 23613820 |
[1] | MI Wen-Bo, FANG Yuan, LIU Zi-Gang, XU Chun-Mei, LIU Gao-Yang, ZOU Ya, XU Ming-Xia, ZHENG Guo-Qiang, CAO Xiao-Dong, FANG Xin-Ling. Differential proteomics analysis of fertility transformation of the winter rape thermo-sensitive sterile line PK3-12S (Brassica rapa L.) [J]. Acta Agronomica Sinica, 2020, 46(10): 1507-1516. |
[2] | Fang YUE,Lei WANG,Yan-Gui CHEN,Xiao-Xia XIN,Qin-Fei LI,Jia-Qin MEI,Zhi-Yong XIONG,Wei QIAN. A new method of synthesizing Brassica napus by crossing B. oleracea with the allohexaploid derived from hybrid between B. napus and B. rapa [J]. Acta Agronomica Sinica, 2019, 45(2): 188-195. |
[3] | Xiao-Jing BAI,Xiao-Ping LIAN,Yu-Kui WANG,He-Cui ZHANG,Qian-Ying LIU,Tong- Hong ZUO,Yi-Zhong ZHANG,Qin-Qin XIE,Deng-Ke HU,Xue-Song REN,Jing ZENG,Shao-Lan LUO,Min PU,Li-Quan ZHU. Cloning and analysis of BoCDPK14 in self-incompatibility Brasscia olerace [J]. Acta Agronomica Sinica, 2019, 45(12): 1773-1783. |
[4] | Chao MI,Yan-Ning ZHAO,Zi-Gang LIU,Qi-Xian CHEN,Wan-Cang SUN,Yan FANG,Xue-Cai LI,Jun-Yan WU. Cloning of RuBisCo Subunits Genes rbcL and rbcS from Winter Rapeseed (Brassica rapa) and Their Expression under Drought Stress [J]. Acta Agronomica Sinica, 2018, 44(12): 1882-1890. |
|