Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (8): 1146-1156.doi: 10.3724/SP.J.1006.2020.94198
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
FENG Tao1,2,TAN Hui1,2,GUAN Mei2,GUAN Chun-Yun2,*()
[1] |
Oh E, Zhu J Y, Wang Z Y. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat Cell Biol, 2012,14:802-809.
doi: 10.1038/ncb2545 pmid: 22820378 |
[2] |
Bai M Y, Shang J X, Oh E, Fan M, Bai Y, Zentella R, Sun T P, Wang Z Y. Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol, 2012,14:810-817.
doi: 10.1038/ncb2546 pmid: 22820377 |
[3] |
Gudesblat G E, Russinova E. Plants grow on brassinosteroids. Curr Opin Plant Biol, 2011,14:530-537.
pmid: 21802346 |
[4] | Ryu H, Hwang I. Brassinosteroids in plant developmental signaling networks. J Plant Biol, 2013,56:267-273. |
[5] | Wang W, Bai M Y, Wang Z Y. The brassinosteroid signaling network—a paradigm of signal integration. Curr Opin Plant Biol, 2014,21:147-153. |
[6] | USDA FAS (Foreign Agricultural Service), 2016. Oilseeds: World Markets and Trade. https://www.fas.usda.gov/data/oilseeds-world-markets-and-trade. |
[7] |
Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Corréa M. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953.
doi: 10.1126/science.1253435 pmid: 25146293 |
[8] |
Mølmann J A, Hagen S F, Bengtsson G B, Johansen T J. Influence of high latitude light conditions on sensory quality and contents of health and sensory-related compounds in swede roots (Brassica napus L. ssp. rapifera Metzg.). J Sci Food Agric, 2018,98:1117-1123.
doi: 10.1002/jsfa.8562 pmid: 28732144 |
[9] | 冯韬, 官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析. 作物学报, 2019,45:204-213. |
Feng T, Guan C Y. Cloning and characterization of phytochrome interacting factor 4 (BnaPIF4) gene from Brassica napus L. Acta Agron Sin, 2019,45:204-213 (in Chinese with English abstract). | |
[10] |
Wei F, Gao G Z, Wang X F, Dong X Y, Li P P, Hua W, Wang X, Wu X M, Chen H. Quantitative determination of oil content in small quantity of oilseed rape by ultrasound-assisted extraction combined with gas chromatography. Ultrason Sonochem, 2008,15:938-942.
pmid: 18504157 |
[11] | 冯韬, 谭晖, 徐江林, 官春云. 油菜素内酯在不同生育期对两品系甘蓝型油菜的生长调控. 中国油料作物学报, 2019,41:904-913. |
Feng T, Tan H, Xu J L, Guan C Y. Epibrassinolide regulation on oilseed rape (Brassica napus L.) in different period. Chin J Oil Crop Sci, 2019,41:904-913 (in Chinese with English abstract). | |
[12] |
Wang Z Y, Nakano T, Gendron J, He J X, Chen M, Vafeados D, Yang Y L, Fujioka S, Yoshida S, Asami T, Chory J. Nuclear-localized BZR1 m llklediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell, 2002,2:505-513.
doi: 10.1016/s1534-5807(02)00153-3 pmid: 11970900 |
[13] |
Casson S A, Franklin K A, Gray J E, Grierson C S, Whitelam G C, Hetherington A M. Phytochrome B and PIF4 regulate stomatal development in response to light quantity. Curr Biol, 2009,19:229-234.
doi: 10.1016/j.cub.2008.12.046 pmid: 19185498 |
[14] |
Kumar S V, Lucyshyn D, Jaeger K E, Alós E, Alvey E, Harberd N P, Wigge P A. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature, 2012,484:242-245.
doi: 10.1038/nature10928 pmid: 22437497 |
[15] |
Lucas M D, Davière J M, Mariana R F, Pontin M, Manuel J I P, Lorrain S, Fankhauser C, Blázquez M A, Titarenko E, Prat S. A molecular framework for light and gibberellin control of cell elongation. Nature, 2008,451:480-484.
doi: 10.1038/nature06520 pmid: 18216857 |
[16] |
Stella B G, Miguel D L, Cristina M, Ana E R, Davière J M, Prat S. BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes Dev, 2014,28:1681-1694.
doi: 10.1101/gad.243675.114 pmid: 25085420 |
[17] |
Franklin K A, Lee S H, Patel D, Kumar S V, Spartz A K, Gu C, Ye S Q, Yu P, Breen G, Cohen J D, Wigge P A, Gray W M. PHYTOCHROME-NTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA, 2011,108:20231-20235.
doi: 10.1073/pnas.1110682108 pmid: 22123947 |
[18] | 冯韬, 官春云. 甘蓝型油菜芸薹素唑耐受因子(BnaBZR1/ BnaBES1)全长CDS克隆与生物信息学分析. 作物学报, 2018,44:1793-1801. |
Feng T, Guan C Y. Cloning and characterization of brassinazole-resistant (BnaBZR1 and BnaBES1) CDS from Brassica napus L. Acta Agron Sin, 2018,44:1793-1801 (in Chinese with English abstract). |
[1] | ZHAO Gai-Hui, LI Shu-Yu, ZHAN Jie-Peng, LI Yan-Bin, SHI Jia-Qin, WANG Xin-Fa, WANG Han-Zhong. Mapping and candidate gene analysis of silique number mutant in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(1): 27-39. |
[2] | ZHANG Chun, ZHAO Xiao-Zhen, PANG Cheng-Ke, PENG Men-Lu, WANG Xiao-Dong, CHEN Feng, ZHANG Wei, CHEN Song, PENG Qi, YI Bin, SUN Cheng-Ming, ZHANG Jie-Fu, FU Ting-Dong. Genome-wide association study of 1000-seed weight in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 650-659. |
[3] | XIE Pan, LIU Wei, KANG Yu, HUA Wei, QIAN Lun-Wen, GUAN Chun-Yun, HE Xin. Identification and relative expression analysis of CBF gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2394-2406. |
[4] | SUN Cheng-Ming,CHEN Feng,CHEN Song,PENG Qi,ZHANG Wei,YI Bin,ZHANG Jie-Fu,FU Ting-Dong. Genome-wide association study of seed number per silique in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(01): 147-153. |
[5] | Jing LI,Jin-Yao YAN,Wen-Shi HU,Xiao-Kun LI,Ri-Huan CONG,Tao REN,Jian-Wei LU. Effects of combined application of nitrogen and potassium on seed yield and nitrogen utilization of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2019, 45(6): 941-948. |
|