Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (8): 1291-1300.doi: 10.3724/SP.J.1006.2020.94169
• RESEARCH NOTES • Previous Articles
GAN Zhuo-Ran,SHI Wen-Qian,LI Yong-Li,HOU Zhi-Hong,LI Hai-Yang,CHENG Qun,DONG Li-Dong,LIU Bao-Hui,LU Si-Jia()
[1] | 田志喜, 刘宝辉, 杨艳萍, 李明, 姚远, 任小波, 薛勇彪. 大豆分子设计育种成果与展望. 中国科学院院刊, 2018,33:915-922. |
Tian Z X, Liu B H, Yang Y P, Li M, Yao Y, Ren X B, Xue Y B. Update and prospect of soybean molecular module-based designer breeding in China. Bull Chin Acad Sci, 2018,33:915-922 (in Chinese with English abstract). | |
[2] |
Li M W, Xin D, Gao Y, Li K P, Fan K, Muñoz N B, Yung W S, Lam H M. Using genomic information to improve soybean adaptability to climate change. J Exp Bot, 2017,68:1823-1834.
doi: 10.1093/jxb/erw348 pmid: 27660480 |
[3] | Raju S K K, Shao M R, Sanchez R, Xu Y Z, Sandhu A, Graef G, Mackenzie S. An epigenetic breeding system in soybean for increased yield and stability. Plant Biotechnol J, 2018,16:1836-1847. |
[4] | Inoue K, Araki T, Endo M. Circadian clock during plant development. J Plant Res, 2018,131:59-66. |
[5] |
McClung C R. Plant circadian rhythms. Plant Cell, 2006,18:792-803.
doi: 10.1105/tpc.106.040980 pmid: 16595397 |
[6] |
Lu S, Zhao X, Hu Y, Liu S, Nan H, Li X, Fang C, Cao D, Shi X, Kong L, Su T, Zhang F, Li S, Wang Z, Yuan X, Cober E R, Weller J L, Liu B, Hou X, Tian Z, Kong F. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet, 2017,49:773-779.
doi: 10.1038/ng.3819 pmid: 28319089 |
[7] |
Inoue K, Araki T, Endo M. Circadian clock during plant development. J Plant Res, 2018,131:59-66.
pmid: 29134443 |
[8] |
Green R M, Tobin E M. Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc Natl Acad Sci USA, 1999,96:4176-4179.
pmid: 10097183 |
[9] |
Bendix C, Marshall C M, Harmon F G. Circadian clock genes universally control key agricultural traits. Mol Plant, 2015,8:1135-1152.
pmid: 25772379 |
[10] |
Gray J A, Shalit-Kaneh A, Chu D N, Hsu P Y, Harmer S L. The REVEILLE clock genes inhibit growth of juvenile and adult plants by control of cell size. Plant Physiol, 2017,173:2308-2322.
doi: 10.1104/pp.17.00109 pmid: 28254761 |
[11] |
Xie Q, Wang P, Liu X, Yuan L, Wang L, Zhang C, Li Y, Xing H, Zhi L, Yue Z, Zhao C, McClung C R, Xu X. LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator. Plant Cell, 2014,26:2843-2857.
doi: 10.1105/tpc.114.126573 |
[12] |
Müller N A, Zhang L, Koornneef M Jiménez-Gómez J M. Mutations in EID1 and LNK2 caused light-conditional clock deceleration during tomato domestication. Proc Natl Acad Sci USA, 2015,115:7135-7140.
doi: 10.1073/pnas.1801862115 pmid: 29789384 |
[13] |
Müller N A, Wijnen C L, Srinivasan A, Ryngajllo M, Ofner I, Lin T, Ranjan A, West D, Maloof J N, Sinha N R, Huang S, Zamir D, Jiménez-Gómez J M. Domestication selected for deceleration of the circadian clock in cultivated tomato. Nat Genet, 2016,48:89-93.
doi: 10.1038/ng.3447 pmid: 26569124 |
[14] | 高耀辉, 马斌, 肖凤洁, 魏光普. CRISPR/Cas9系统在园林植物中的研究展望. 北方园艺, 2019, (15):133-140. |
Gao Y H, Ma B, Xiao F J, Wei G P. Prospect of research on CRISPR/Cas9 system in garden plants. Nor Hortic, 2019, (15):133-140 (in Chinese with English abstract). | |
[15] | 暴会会, 尹竹君, 王少坤, 马瑞红, 谢俊俊, 张杰, 杨正安. CRISPR-Cas9系统在蔬菜育种上应用研究进展. 江西农业学报, 2019,31(7):38-44. |
Bao H H, Yin Z J, Wang S K, Ma R H, Xie J J, Zhang J, Yang Z A. Research advances in application of CRISPR/Cas9 system in vegetable breeding. Acta Agric Jiangxi, 2019,31(7):38-44 (in Chinese with English abstract). | |
[16] |
Zhang J, Zhu Z, Yue W, Li J, Chen Q, Yan Y, Lei A, Hua J. Establishment of CRISPR/Cas9 mediated knock-in system for porcine cells with high efficiency. Appl Biochem Biotechnol, 2019,189:26-36.
doi: 10.1007/s12010-019-02984-5 pmid: 30859452 |
[17] |
Lin C Y, Su Y H. Genome editing in sea urchin embryos by using a CRISPR/Cas9 system. Dev Biol, 2016,409:420-428.
doi: 10.1016/j.ydbio.2015.11.018 pmid: 26632489 |
[18] |
Cai Y, Wang L, Chen L, Wu T, Liu L, Sun S, Wu C, Yao W, Jiang B, Yuan S, Han T, Hou W. Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant Biotechnol J, 2020,18:298-309.
doi: 10.1111/pbi.13199 pmid: 31240772 |
[19] |
Bao A, Chen H, Chen L, Chen S, Hao Q, Guo W, Qiu D, Shan Z, Yang Z, Yuan S, Zhang C, Zhang X, Liu B, Kong F, Li X, Zhou X, Tran L P, Cao D. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol, 2019,19:131.
doi: 10.1186/s12870-019-1746-6 pmid: 30961525 |
[20] |
Do P T, Nguyen C X, Bui H T, Tran L T N, Stacey G, Gillman J D, Zhang Z J, Stacey M G. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biol, 2019,19:311.
doi: 10.1186/s12870-019-1906-8 pmid: 31307375 |
[21] | 曾栋昌, 马兴亮, 谢先荣, 祝钦泷, 刘耀光. 植物CRISPR/Cas9多基因编辑载体构建和突变分析的操作方法. 中国科学: 生命科学, 2018,48:783-794. |
Zeng D C, Ma X L, Xie X R, Zhu Q L, Liu Y G. A protocol for CRISPR/Cas9-based multi-gene editing and sequence decoding of mutant sites in plants. Sci Sin Vitae, 2018,48:783-794 (in Chinese with English abstract). | |
[22] | 侯智红, 吴艳, 程群, 董利东, 芦思佳, 南海洋, 甘卓然, 刘宝辉. 利用CRISPR/Cas9技术创制大豆高油酸突变系. 作物学报, 2019,45:839-847. |
Hou Z H, Wu Y, Cheng Q, Dong L D, Lu S J, Nan H Y, Gan Z R, Liu B H. Creation of high oleic acid soybean mutation plants by CRISPR/Cas9. Acta Agron Sin, 2019,45:839-847 (in Chinese with English abstract). | |
[23] |
Cheng Q, Dong L D, Gao T J, Liu T F, Li N H, Wang L, Chang X, Wu J J, Xu P F, Zhang S Z. The bHLH transcription factor GmPIB1 facilitates resistance to Phytophthora sojae in Glycine max. J Exp Bot, 2018,69:2527-2541.
doi: 10.1093/jxb/ery103 pmid: 29579245 |
[24] | 解莉楠, 宋凤艳, 张旸. CRISPR/Cas9系统在植物基因组定点编辑中的研究进展. 中国农业科学, 2015,48:1669-1677. |
Xie L N, Song F Y, Zhang Y. Progress in research of CRISPR/Cas9 system in genome targeted editing in plants. Sci Agric Sin, 2015,48:1669-1677 (in Chinese with English abstract). | |
[25] |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337:816-821.
doi: 10.1126/science.1225829 pmid: 22745249 |
[26] |
Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet, 2011,45:273-297.
doi: 10.1146/annurev-genet-110410-132430 |
[27] |
Wiedenheft B, Sternberg S H, Doudna J A. RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012,482:331-338.
doi: 10.1038/nature10886 |
[28] |
Nekrasov V, Staskawicz B, Weigel D, Jones J D, Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol, 2013,31:691-693.
doi: 10.1038/nbt.2655 pmid: 23929340 |
[29] |
Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi J J, Qiu J L, Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol, 2013,31:686-688.
doi: 10.1038/nbt.2650 pmid: 23929338 |
[30] |
Li J F, Norville J E, Aach J, McCormack M, Zhang D, Bush J, Church G M, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol, 2013,31:688-691.
doi: 10.1038/nbt.2654 pmid: 23929339 |
[31] |
Feng Z Y, Zhang B T, Ding W, Liu X D, Yang D L, Wei P L, Cao F Q, Zhu S H, Zhang F, Mao Y F, Zhu J K. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 2013,23:1229-1232.
doi: 10.1038/cr.2013.114 pmid: 23958582 |
[32] |
Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu L J. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res, 2013,23:1233-1236.
doi: 10.1038/cr.2013.123 |
[33] |
Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks D P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res, 2013,41:e188.
doi: 10.1093/nar/gkt780 pmid: 23999092 |
[34] |
Jia H, Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One, 2014,9:e93806.
pmid: 24710347 |
[35] |
Fauser F, Schiml S, Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J, 2014,79:348-359.
doi: 10.1111/tpj.12554 pmid: 24836556 |
[36] | 梁丹, 吴宇轩, 李劲松. CRISPR-Cas9技术在干细胞中的应用. 生命科学, 2015,27(1):93-98. |
Liang D, Wu Y X, Li J S. Progress of CRISPR-Cas9 in stem cell research. Chin Bull Life Sci, 2015,27(1):93-98 (in Chinese with English abstract). | |
[37] |
Chen K, Gao C. Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep, 2014,33:575-583.
doi: 10.1007/s00299-013-1539-6 pmid: 24277082 |
[38] |
Curtin S J, Zhang F, Sander J D, Haun W J, Starker C, Baltes N J, Reyon D, Dahlborg E J, Goodwin M J, Coffman A P, Dobbs D, Joung J K, Voytas D F, Stupar R M. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol, 2011,156:466-473.
doi: 10.1104/pp.111.172981 pmid: 21464476 |
[39] |
Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han T, Hou W. CRISPR/Cas9-Mediated genome editing in soybean hairy roots. PLoS One, 2015,10:e0136064.
pmid: 26284791 |
[1] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[2] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[3] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[4] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
[5] | PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209. |
[6] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[7] | LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951. |
[8] | DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571. |
[9] | ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596. |
[10] | WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643. |
[11] | ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537. |
[12] | SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752. |
[13] | CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790. |
[14] | ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805. |
[15] | YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702. |
|