Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (8): 1291-1300.doi: 10.3724/SP.J.1006.2020.94169

• RESEARCH NOTES • Previous Articles    

Identification of CRISPR/Cas9 knockout targets and tissue expression analysis of circadian clock genes GmLNK1/2, GmRVE4/8, and GmTOC1 in soybean

GAN Zhuo-Ran,SHI Wen-Qian,LI Yong-Li,HOU Zhi-Hong,LI Hai-Yang,CHENG Qun,DONG Li-Dong,LIU Bao-Hui,LU Si-Jia()   

  1. School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong, China
  • Received:2019-11-07 Accepted:2020-03-24 Online:2020-08-12 Published:2020-04-07
  • Contact: Si-Jia LU E-mail:lusijia@gzhu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31771815);National Natural Science Foundation of China(31701445);State Key Laboratory of Crop Genetics & Germplasm Enhancement (ZW201901)(ZW201901)

Abstract:

Circadian clock genes play an important role in improving crop yield. LNK1, LNK2, RVE4, RVE8, and TOC1 are important circadian clock genes in plants. Homologous genes of AtLNK1, AtLNK2, AtRVE4, AtRVE8, and AtTOC1 in soybean were found by evolutionary tree analysis. These genes were expressed in soybean roots, stems and leaves. The knockout vectors of these genes were successfully constructed by using CRISPR/Cas9 gene editing technology. Transformation system of soybean root hair and RT-PCR were used to identify 13 genes targets effectively. The results of this study provide important target informations for further obtaining soybean mutant materials, and a foundation for further studying the function of circadian clock genes.

Key words: soybean, gene knockout, clock gene, CRISPR/Cas9

Table 1

List of gene target primers"

靶点引物
Target primer
引物序列
Primer sequence (5°-3°)
靶点对应基因
Target of gene
LNK1T1F gtcaGGAGACAAGTGTGTGGTGG GmLNK1a, GmLNK1b
LNK1T1R aaacCCACCACACACTTGTCTCC GmLNK1a, GmLNK1b
LNK1T2F gtcaAGAGGAGTTCTGCTGGCTC GmLNK1a, GmLNK1b
LNK1T2R aaacGAGCCAGCAGAACTCCTCT GmLNK1a, GmLNK1b
LNK1T3F attgCTTGGGAGACAAGTGTGTGG GmLNK1c, GmLNK1d
LNK1T3R aaacCCACACACTTGTCTCCCAAG GmLNK1c, GmLNK1d
LNK1T4F attgAGACTTTGAAGATGTTGAC GmLNK1c, GmLNK1d
LNK1T4R aaacGTCAACATCTTCAAAGTCT GmLNK1c, GmLNK1d
LNK2T1F gtcaACATAATATGGGGTGAAGG GmLNK2a, GmLNK2b
LNK2T1R aaacCCTTCACCCCATATTATGT GmLNK2a, GmLNK2b
LNK2T2F gtcaAAACTGATCAGGGTTCCCT GmLNK2c, GmLNK2d
LNK2T2R aaacAGGGAACCCTGATCAGTTT GmLNK2c, GmLNK2d
LNK2T3F attgTTTGATTGGAACGACGAAG GmLNK2a, 2b, 2c, 2d
LNK2T3R aaacCTTCGTCGTTCCAATCAAA GmLNK2a, 2b, 2c, 2d
LNK2T4F attgTCATATTGTGCCTTATCCGG GmLNK2c, GmLNK2d
LNK2T4R aaacCCGGATAAGGCACAATATGA GmLNK2c, GmLNK2d
RVE48T1F gtcaCTTCCCTGCTGATGAATGC GmRVE4/8b, GmRVE4/8c
RVE48T1R aaacGCATTCATCAGCAGGGAAG GmRVE4/8b, GmRVE4/8c
RVE48T2F gtcaTCATCCCATGTGACATACCC GmRVE4/8a, GmRVE4/8d
RVE48T2R aaacGGGTATGTCACATGGGATGA GmRVE4/8a, GmRVE4/8d
RVE48T3F attgCAGCTTTGCGCTTTGGACG GmRVE4/8b, GmRVE4/8c
RVE48T3R aaacCGTCCAAAGCGCAAAGCTG GmRVE4/8b, GmRVE4/8c
RVE48T4F attgAAGCTTTGCGCTTAGGCCG GmRVE4/8a, GmRVE4/8d
RVE48T4R aaacCGGCCTAAGCGCAAAGCTT GmRVE4/8a, GmRVE4/8d
TOC1T1F gtcaCGATTCCAAGAGTTCTCAAG GmTOC1a, GmTOC1b
TOC1T1R aaacCTTGAGAACTCTTGGAATCG GmTOC1a, GmTOC1b
TOC1T2F gtcaGTGATGTCCGCACAAGATG GmTOC1a, GmTOC1b
TOC1T2R aaacCATCTTGTGCGGACATCAC GmTOC1a, GmTOC1b
TOC1T3F attgGTGGGAATAATAGTAAGAG GmTOC1c, GmTOC1d
TOC1T3R aaacCTCTTACTATTATTCCCAC GmTOC1c, GmTOC1d
TOC1T4F attgTTGTAAAGTGCTTGAGGCT GmTOC1c, GmTOC1d
TOC1T4R aaacAGCCTCAAGCACTTTACAA GmTOC1c, GmTOC1d

Table 2

Germination medium and root medium"

培养基类型
Medium type
药品名称
Name of the medicine
药品用量
Medicine
dosage
萌发培养基
Germination medium
B5盐 B5 salt mixture
蔗糖 Sucrose (g L-1) 20
琼脂 Agar (g L-1) 8
发根培养基
Rooting medium
MS合成盐 MS salt mixture
蔗糖 Sucrose (g L-1) 30
2-(4-吗啉)乙磺酸 MES 0.6
琼脂 Agar (g L-1) 8
头孢霉素 Cef (mg L-1) 250
羧苄青霉素 Car (mg L-1) 250

Table 3

Target primer"

靶点检测引物
Target primer
引物序列
Primer sequence (5°-3°)
靶点检测引物
Target primer
引物序列
Primer sequence (5°-3°)
SP3 GTCGTGCTCCACATGTTGACCGG LNK2cT4&2R TCCTGAGGTTAGTAGTTCTCCACT
SP1 GAAGTTATTGCATCTATGTCGGG LNK2dT3F CTCTCCGTCGCCGTTATAGCA
LNK1aF TGACGCCAGGGTATCTTAAA LNK2dT3R ACCAAACGAAGCACGAACA
LNK1aR TCTCCATGTGTGTGTTTTGGTA LNK2dT4&2F GGTGGTGGAGGGAGAAGATGAG
LNK1bF CTCAGGGTAGGGAGGACTTG LNK2dT4&2R AGACACTTATTGCCGCTACAACTG
LNK1bR CGGTAAAGTTGAGCCTTGGT RVE4/8aF ACAGCTCTTCAGCTAGGTGTT
LNK1cF TCATATAGTGCCCCATGCCA RVE4/8aR GAGGAGAGGGGGTATGGGTT
LNK1cR AGTTCTATAGCAGCTCATGACA RVE4/8bF AGCGAAGAACTCTGCAATCCA
LNK1dF GCCCGATCATTGCTTCAAGAG RVE4/8bR CTACCACCTTGGGCCGAAAT
LNK1dR AGTTCTATAGCAGCTCGTGGC RVE4/8cF TTCGAAGCCATGCTCAGAAG
LNK2aT3F GAATTCGGCGATGTGTGAGC RVE4/8cR CCAGCAACAAGGTTCGTAGT
LNK2aT3R ACAGCTACACAAAGACACACA RVE4/8dF TTCGTTGGTCATCTTGCTGGT
LNK2aT1F CCGTCCAAGGAGATTGTCACTGA RVE4/8dR CTGGACATGGCCTTCTGTGT
LNK2aT1R TCCTGAGGTAGGTAGTTCTCCACT TOC1aF TCCCTCAACGATGCTG
LNK2bT3F TGATGGAGTGCGTTTCTCTG TOC1aR GCCTCCGTCTCCACAT
LNK2bT3R CCCTGATTTTCCTGGCGTAA TOC1bF TTGAGCAAGTCCAGGGTT
LNK2bT1F CCGTCCAAGGAGATTGTCACTGA TOC1bR ATGGCTGTGATGGTAACTCG
LNK2bT1R TCCTGAGGTAGGTAGTTCTCCACT TOC1cF CTCTAACTAACTATCCAGACCCTA
LNK2cT3F TTCTCCGTCGATCAGTGAAGTG TOC1cR ATGGCTGGTGGGTTGA
LNK2cT3R GCTAAGAGTCACGCCTCCTTG TOC1dF TACGCCCTCCCTCTTT
LNK2cT4&2F CGTGATGCCAAATTAGTTGGGTAT TOC1dR GGGACTTGGGAAATACA

Fig. 1

Homology comparison A: amino acid sequences comparison of AtLNK1, GmLNK1a, GmLNK1b, GmLNK1c, and GmLNK1d; B: amino acid sequences comparison of AtLNK2, GmLNK2a, GmLNK2b, GmLNK2c, and GmLNK2d; C: amino acid sequences comparison of AtTOC1, GmTOC1a, GmTOC1b, GmTOC1c, and GmTOC1d; D: amino acid sequences comparison of AtRVE4, AtRVE8, GmRVE4/8a, GmRVE4/8b, GmRVE4/8c, and GmRVE4/8d."

Fig. 2

Expression of four clock genes in soybean tissues A: the expression of GmLNK1a/b/c/d in soybean W82 tissues; B: the expression of GmLNK2a/b/c/d in soybean W82 tissues; C: the expression of GmTOC1a/b/c/d in soybean W82 tissues; D: the expression of GmRVE4/8a/b/c/d in soybean W82 tissues."

Fig. 3

Schematic diagram of the Cas9 vector construction a: target of LNK1T1, LNK2T1, TOC1T1, and RVE4/8T1; b: target of LNK1T2, LNK2T2, TOC1T2, and RVE4/8T2; c: target of LNK1T3, LNK2T3, TOC1T3, and RVE4/8T3; d: target LNK1T4, LNK2T4, TOC1T4, and RVE4/8T4."

Fig. 4

Detailed sequence of the targets site in the transgenic soybean hairy roots A: mutations were found in target LNK1T1 of GmLNK1a, target LNK1T2 of GmLNK1b, target LNK1T4 of GmLNK1c and target LNK1T4 of GmLNK1d; B: mutations were found in target LNK2T1 of GmLNK2a, target LNK2T1 of GmLNK2b, target LNK2T4 of GmLNK2c and target LNK2T4 of GmLNK2d; C: mutations were found in target TOC1T2 of GmTOC1b, target TOC1T4 of GmTOC1c and target TOC1T4 of GmTOC1d; D: mutations were found in target RVE4/8T1 of GmRVE4/8b and target RVE4/8T4 of GmRVE4/8d."

[1] 田志喜, 刘宝辉, 杨艳萍, 李明, 姚远, 任小波, 薛勇彪. 大豆分子设计育种成果与展望. 中国科学院院刊, 2018,33:915-922.
Tian Z X, Liu B H, Yang Y P, Li M, Yao Y, Ren X B, Xue Y B. Update and prospect of soybean molecular module-based designer breeding in China. Bull Chin Acad Sci, 2018,33:915-922 (in Chinese with English abstract).
[2] Li M W, Xin D, Gao Y, Li K P, Fan K, Muñoz N B, Yung W S, Lam H M. Using genomic information to improve soybean adaptability to climate change. J Exp Bot, 2017,68:1823-1834.
doi: 10.1093/jxb/erw348 pmid: 27660480
[3] Raju S K K, Shao M R, Sanchez R, Xu Y Z, Sandhu A, Graef G, Mackenzie S. An epigenetic breeding system in soybean for increased yield and stability. Plant Biotechnol J, 2018,16:1836-1847.
[4] Inoue K, Araki T, Endo M. Circadian clock during plant development. J Plant Res, 2018,131:59-66.
[5] McClung C R. Plant circadian rhythms. Plant Cell, 2006,18:792-803.
doi: 10.1105/tpc.106.040980 pmid: 16595397
[6] Lu S, Zhao X, Hu Y, Liu S, Nan H, Li X, Fang C, Cao D, Shi X, Kong L, Su T, Zhang F, Li S, Wang Z, Yuan X, Cober E R, Weller J L, Liu B, Hou X, Tian Z, Kong F. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet, 2017,49:773-779.
doi: 10.1038/ng.3819 pmid: 28319089
[7] Inoue K, Araki T, Endo M. Circadian clock during plant development. J Plant Res, 2018,131:59-66.
pmid: 29134443
[8] Green R M, Tobin E M. Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc Natl Acad Sci USA, 1999,96:4176-4179.
pmid: 10097183
[9] Bendix C, Marshall C M, Harmon F G. Circadian clock genes universally control key agricultural traits. Mol Plant, 2015,8:1135-1152.
pmid: 25772379
[10] Gray J A, Shalit-Kaneh A, Chu D N, Hsu P Y, Harmer S L. The REVEILLE clock genes inhibit growth of juvenile and adult plants by control of cell size. Plant Physiol, 2017,173:2308-2322.
doi: 10.1104/pp.17.00109 pmid: 28254761
[11] Xie Q, Wang P, Liu X, Yuan L, Wang L, Zhang C, Li Y, Xing H, Zhi L, Yue Z, Zhao C, McClung C R, Xu X. LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator. Plant Cell, 2014,26:2843-2857.
doi: 10.1105/tpc.114.126573
[12] Müller N A, Zhang L, Koornneef M Jiménez-Gómez J M. Mutations in EID1 and LNK2 caused light-conditional clock deceleration during tomato domestication. Proc Natl Acad Sci USA, 2015,115:7135-7140.
doi: 10.1073/pnas.1801862115 pmid: 29789384
[13] Müller N A, Wijnen C L, Srinivasan A, Ryngajllo M, Ofner I, Lin T, Ranjan A, West D, Maloof J N, Sinha N R, Huang S, Zamir D, Jiménez-Gómez J M. Domestication selected for deceleration of the circadian clock in cultivated tomato. Nat Genet, 2016,48:89-93.
doi: 10.1038/ng.3447 pmid: 26569124
[14] 高耀辉, 马斌, 肖凤洁, 魏光普. CRISPR/Cas9系统在园林植物中的研究展望. 北方园艺, 2019, (15):133-140.
Gao Y H, Ma B, Xiao F J, Wei G P. Prospect of research on CRISPR/Cas9 system in garden plants. Nor Hortic, 2019, (15):133-140 (in Chinese with English abstract).
[15] 暴会会, 尹竹君, 王少坤, 马瑞红, 谢俊俊, 张杰, 杨正安. CRISPR-Cas9系统在蔬菜育种上应用研究进展. 江西农业学报, 2019,31(7):38-44.
Bao H H, Yin Z J, Wang S K, Ma R H, Xie J J, Zhang J, Yang Z A. Research advances in application of CRISPR/Cas9 system in vegetable breeding. Acta Agric Jiangxi, 2019,31(7):38-44 (in Chinese with English abstract).
[16] Zhang J, Zhu Z, Yue W, Li J, Chen Q, Yan Y, Lei A, Hua J. Establishment of CRISPR/Cas9 mediated knock-in system for porcine cells with high efficiency. Appl Biochem Biotechnol, 2019,189:26-36.
doi: 10.1007/s12010-019-02984-5 pmid: 30859452
[17] Lin C Y, Su Y H. Genome editing in sea urchin embryos by using a CRISPR/Cas9 system. Dev Biol, 2016,409:420-428.
doi: 10.1016/j.ydbio.2015.11.018 pmid: 26632489
[18] Cai Y, Wang L, Chen L, Wu T, Liu L, Sun S, Wu C, Yao W, Jiang B, Yuan S, Han T, Hou W. Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant Biotechnol J, 2020,18:298-309.
doi: 10.1111/pbi.13199 pmid: 31240772
[19] Bao A, Chen H, Chen L, Chen S, Hao Q, Guo W, Qiu D, Shan Z, Yang Z, Yuan S, Zhang C, Zhang X, Liu B, Kong F, Li X, Zhou X, Tran L P, Cao D. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol, 2019,19:131.
doi: 10.1186/s12870-019-1746-6 pmid: 30961525
[20] Do P T, Nguyen C X, Bui H T, Tran L T N, Stacey G, Gillman J D, Zhang Z J, Stacey M G. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biol, 2019,19:311.
doi: 10.1186/s12870-019-1906-8 pmid: 31307375
[21] 曾栋昌, 马兴亮, 谢先荣, 祝钦泷, 刘耀光. 植物CRISPR/Cas9多基因编辑载体构建和突变分析的操作方法. 中国科学: 生命科学, 2018,48:783-794.
Zeng D C, Ma X L, Xie X R, Zhu Q L, Liu Y G. A protocol for CRISPR/Cas9-based multi-gene editing and sequence decoding of mutant sites in plants. Sci Sin Vitae, 2018,48:783-794 (in Chinese with English abstract).
[22] 侯智红, 吴艳, 程群, 董利东, 芦思佳, 南海洋, 甘卓然, 刘宝辉. 利用CRISPR/Cas9技术创制大豆高油酸突变系. 作物学报, 2019,45:839-847.
Hou Z H, Wu Y, Cheng Q, Dong L D, Lu S J, Nan H Y, Gan Z R, Liu B H. Creation of high oleic acid soybean mutation plants by CRISPR/Cas9. Acta Agron Sin, 2019,45:839-847 (in Chinese with English abstract).
[23] Cheng Q, Dong L D, Gao T J, Liu T F, Li N H, Wang L, Chang X, Wu J J, Xu P F, Zhang S Z. The bHLH transcription factor GmPIB1 facilitates resistance to Phytophthora sojae in Glycine max. J Exp Bot, 2018,69:2527-2541.
doi: 10.1093/jxb/ery103 pmid: 29579245
[24] 解莉楠, 宋凤艳, 张旸. CRISPR/Cas9系统在植物基因组定点编辑中的研究进展. 中国农业科学, 2015,48:1669-1677.
Xie L N, Song F Y, Zhang Y. Progress in research of CRISPR/Cas9 system in genome targeted editing in plants. Sci Agric Sin, 2015,48:1669-1677 (in Chinese with English abstract).
[25] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337:816-821.
doi: 10.1126/science.1225829 pmid: 22745249
[26] Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet, 2011,45:273-297.
doi: 10.1146/annurev-genet-110410-132430
[27] Wiedenheft B, Sternberg S H, Doudna J A. RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012,482:331-338.
doi: 10.1038/nature10886
[28] Nekrasov V, Staskawicz B, Weigel D, Jones J D, Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol, 2013,31:691-693.
doi: 10.1038/nbt.2655 pmid: 23929340
[29] Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi J J, Qiu J L, Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol, 2013,31:686-688.
doi: 10.1038/nbt.2650 pmid: 23929338
[30] Li J F, Norville J E, Aach J, McCormack M, Zhang D, Bush J, Church G M, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol, 2013,31:688-691.
doi: 10.1038/nbt.2654 pmid: 23929339
[31] Feng Z Y, Zhang B T, Ding W, Liu X D, Yang D L, Wei P L, Cao F Q, Zhu S H, Zhang F, Mao Y F, Zhu J K. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 2013,23:1229-1232.
doi: 10.1038/cr.2013.114 pmid: 23958582
[32] Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu L J. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res, 2013,23:1233-1236.
doi: 10.1038/cr.2013.123
[33] Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks D P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res, 2013,41:e188.
doi: 10.1093/nar/gkt780 pmid: 23999092
[34] Jia H, Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One, 2014,9:e93806.
pmid: 24710347
[35] Fauser F, Schiml S, Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J, 2014,79:348-359.
doi: 10.1111/tpj.12554 pmid: 24836556
[36] 梁丹, 吴宇轩, 李劲松. CRISPR-Cas9技术在干细胞中的应用. 生命科学, 2015,27(1):93-98.
Liang D, Wu Y X, Li J S. Progress of CRISPR-Cas9 in stem cell research. Chin Bull Life Sci, 2015,27(1):93-98 (in Chinese with English abstract).
[37] Chen K, Gao C. Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep, 2014,33:575-583.
doi: 10.1007/s00299-013-1539-6 pmid: 24277082
[38] Curtin S J, Zhang F, Sander J D, Haun W J, Starker C, Baltes N J, Reyon D, Dahlborg E J, Goodwin M J, Coffman A P, Dobbs D, Joung J K, Voytas D F, Stupar R M. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol, 2011,156:466-473.
doi: 10.1104/pp.111.172981 pmid: 21464476
[39] Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han T, Hou W. CRISPR/Cas9-Mediated genome editing in soybean hairy roots. PLoS One, 2015,10:e0136064.
pmid: 26284791
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[5] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[6] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[7] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[8] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[9] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[10] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[11] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[12] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
[13] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
[14] ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805.
[15] YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!