Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (2): 210-223.doi: 10.3724/SP.J.1006.2021.04086

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Breeding of a novel clubroot disease-resistant Brassica napus variety Huayouza 62R

LI Qian1(), Nadil Shah1, ZHOU Yuan-Wei2, HOU Zhao-Ke1, GONG Jian-Fang1, LIU Jue3, SHANG Zheng-Wei1, ZHANG Lei1, ZHAN Zong-Xiang1, CHANG Hai-Bin4, FU Ting-Dong1, PIAO Zhong-Yun5,*(), ZHANG Chun-Yu1,*()   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2Yichang Academy of Agricultural Sciences, Yichang 443000, Hubei, China
    3Dehong Dai Jingpo Autonomous Prefecture Agricultural Technology Extension Center, Dehong 678400, Yunnan, China
    4Huanggang Academy of Agricultural Sciences, Huanggang 438000, Hubei, China
    5College of Horticulture, Shenyang Agricultural University, Shenyang 110000, Liaoning, China
  • Received:2020-04-02 Accepted:2020-07-02 Online:2021-02-12 Published:2020-07-11
  • Contact: PIAO Zhong-Yun,ZHANG Chun-Yu E-mail:2455302842@qq.com;zypiao@gmail.com;zhchy@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2016YFD0101300);China Agriculture Research System(CARS-12)

Abstract:

The rapeseed clubroot disease incidence in China is about 0.67 million hectare, accounting for 10% of the canola production area, which become a serious threat for the safety of Brassica napus industry. Based on this, we used CR Shinki, a Chinese cabbage material containing CRb clubroot disease resistance locus, as the donor parent, and Pol.CMS restorer line Bing409, the parent of Brassica napus national approved varieties Huayouza 62, as the recipient parent, and the CRb resistance locus was introduced into Bing409 by breeding programs such as crossing, backcrossing, self-cross with the foreground and genetic background selection. In the BC3F2 generation, a new restorer line Bing409R with a genetic background close to Bing409 containing CRb resistance locus was obtained, and Huayouza 62R, the first rapeseed hybrid resistant to clubroot disease in China was successfully developed. The results were as follows: CRb disease resistance locus appeared as a dominant single-gene inheritance in B. napus background, and the genetic improvement of resistance to clubroot disease did not at the expense of yield and quality losses for new restorer line Bing409R and its hybrid Huayouza 62R. Bing409R and Huayouza 62R were showed immune-resistance to physiological races of Plasmodiophora brassicae in Sichuan, Hubei, and Anhui provinces in China. This study will provide valuable resources for the breeding of rapeseed in China, and supplemented important support to overcome the threat of rapeseed clubroot disease.

Key words: Brassica napus, clubroot disease, CRb resistance locus, restorer line, genetic improvement, Huayouza 62R

Table S1

Polymorphic molecular markers used for genetic background screening"

染色体
Chr.
标记名称
Marker name
物理位置
Physical
location (Mb)
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
A01 niab_ssr113 366,648 CAAAAAGTTGCGGTCAATCT CCTCCAAAGCTCAATCACTG
sau_um356 2,137,110 CATCTTCGTCTCTCCATCACCT GTATGGTAGGAGGAGAGTTCGCT
cnu_ssr134 4,481,886 TCTCTTTGCCATCGTCGTTTC CCCCTCAAACTGAGCAGTCAA
niab_ssr032 7,684,077 TTCTCCCCATCCTCTCATCTTA ACCCACAACCAACAAAATCTTC
cnu_mBRPGM0190 9,861,961 GAGATCCAATAGCGAGCACA TGTGTTATCGGGTGAAGTGG
染色体
Chr.
标记名称
Marker name
物理位置
Physical
location (Mb)
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
A01 ACMP00456 13,955,674 CTCTACAAGCCGCAGAGAGA CATCCACCACAGAGATTGCT
ACMP00617 15,044,996 AACTCAATGCTCTTCGCTCA CCTTCTGCTGCTTCCAAGAT
ACMP00297 16,999,515 CAGATATTGCCCAAACACCA CTTCGCTTCTGAGCTTTCCT
sau_um586 20,719,752 AGGGTGATGATGATGTACAGGAG CTTCGTTAATTCTTCCACCCAG
cnu_ssr125 26,899,174 TCCAAGTGAAGGATAATGCTCGT TGTACAATGGGGATGTTGTGG
A02 sau-um619 1,404,160 GAGAGCTCACTTGTGCTTCTTGT CCGATCAAGTTATTCGCTCTCT
cnu_ssr116 3,025,687 GCCATGGTGGTGGGATTAGA TGGTCGAACGTGTGTCGATAAT
niab_ssr143 5,142,784 GATATGTTTCCAAACAAGTCAA AAATTCGACCCCTTTTCG
sau_um434 7,390,390 AGCTAGGGATGAGAAGAAGACCG TCTTTGTGTCCGTCAAGAGTCC
cnu_ssr036 10,214,155 AGCACAGTCAAAACTCAGAATGA AGGCATGCGCTCTCTATCTC
cnu_mBRPGM1391 11,315,073 GGTTTAGAGTGGTGCGGAAT CCGGGCCTAAAGTAATCAAA
cnu_mBRPGM0182a 14,588,355 TGGAGTAGAAGCGTCGTCTG CCTTCCTCCTCTCAGTTCCA
cnu_mBRPGM1527a 16,911,280 GCAAGCACGGAGACTAAACA GACGGTGAAGCTGTACGAAG
cnu_mBRPGM0813 18,824,804 GTTCCATAGGGCGTTCACAT CCGATGATTCTCTCAATCAGG
cnu_ssr447 21,870,396 TGGTGTCAAACGGACAGAAA ATACTCGGCTCAAACCGTCA
CB10416 23,408,087 GCTGTTGCTGTAGGTTTGA GAGCCAGCGTTGATAAGA
A03 niab_ssr115 1,049,474 CGGTGTATACCGAACGAGAA AAACCCAATCAACCCCTTTA
ACMP00292 2,920,902 GGGTTGCTGGTTTAGCTGTT TGAATCCGCTGAACTCTCTG
cnu_mBRPGM0240 5,317,208 GAGGGAAAGAGGACAATACGA TCATCGAGAAACGAAGGGTA
cnu_ssr173 8,444,756 TGTATTCCATTATTTCCGACTAACCT CCGCATTTTAAAAACGTGAGAAA
cnu_ssr290 9,860,984 CGATTTTGCCATTGTCTAAGC TGAAGACACGTTGGTTGAACA
ACMP00755 11,006,524 GTCATCGCAAGAGGACAAGA AAAGCTCCATCAAAGCACCT
cnu_ssr098 14,357,780 TGCGACCCAAGTAGGTGAAAC TGTCTCTCGCTCATTCATCCAA
cnu_ssr327 17,867,509 TTCTTGACCAAAAGAATCATGG CTAACACGGGGAAAAGCAGA
ACMP00186 19,379,932 GCCTCCCTGACTTGTACCTC TTCAATGCGCCAGTTAAGAC
ACMP00410 20,585,363 CTCAAAGCATGAACGTGGAC CCTCCCTTGATTTGTGGAGT
sau_um146 22,875,333 CTCGCAAAATCCCTTCTTCG CATATCGCTCGAGTTGCAGA
cnu_ssr526 23,351,679 TCCGAGAAGCACACAAAGAA TGACCATTTTCTGCCATTCA
TCR079 23,692,426 TGACGTTCAATCAAAGCCTGA TTTAGCAATCAAATGCAAATTCAA
cnu_ssr492 23,747,774 TCGAGGTGGTTACAATCCAA CAATGCGGATCTACCTCTCA
cra_id011 24,345,511 GTCGGATTTCTTTCTACACG TGAACCTATCTTCCTCAACG
cra_ssr015 24,345,899 CGGCCTCCGGAAATTTATTA TGGGAGGACCTCTCTCTTCTT
Cra_RT1 24,351,487 ACGTAAAGAAGCTGACCGGAGAC AGGCTTAACAACAGTTCCAGATT
cra_ssr017 24,355,996 GTGTGACCGCACTGTTGTTT AGTTTGACCCAAACGCATAA
sau_um026 25,648,956 AGTGGCTCCCAGGAGGATAATA CTTGGAGAAGAGAAACTTGGGC
cnu_ssr241 27,414,883 AATGCTGTGTCCATGACCAA CGGGCATCCACCTAATTTGT
At2g35530 29,980,641 CAGAGTAACTGGTTATGCCCGTC CAATAGGGATAAACCTGGAGACAG
ACMP00563 31,183,993 CGGAGATGGGATTAAGGAGA AAAGATCGTGTGGGTGGAAT
A04 BrID10929 251,988 CAATTTGGGAAGACAGTTCT GATTCGTTGATATAAGGCCA
BrID10321 2,417,875 TGTGTTTCCTAGTGTGTTGG ATCAGTCTGAGGGTTCATCA
BrID101249 3,990,390 TTGCATAGCACATGTAGGAG GAACGTCTACTTATGGAGAACA
BrID10645 7,441,204 GCAGAGGAAAACAATCAGAC AAGCGTCGACTTGAAATCT
ACMP00073 8,674,696 TTCAACCACACCGACAAACT CTGACGGAGTCCCTGTACCT
ACMP00356 11,811,660 TGAGGTCTACAGCCCAAGTG AATGGAGATCGTGTGCAAAG
染色体
Chr.
标记名称
Marker name
物理位置
Physical
location (Mb)
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
A04 ACMP00744 12,860,981 CCTGTTCCAATCCCATTCTT AGATCCCTGACGGGTTTATG
ACMP00281 15,028,874 TCGACTTTGACGAAGACTGG AGTCCTCATGGCATCAAACC
hri_Mbrms195 17,105,559 AATACTTTCTGAAGTTGTCCGCTAA AACCTACGCAAGATGCTTCTACTT
cnu_ssr005 18,776,905 AGGAGTCTCGTTCCGTGAGA TTGAAATTAAGTCGAGCAAACAA
A05 cnu_ssr387 236,456 ACTCGAACCATTCTGGCAAA GGAACGACTTCCTCCCGTAT
niab_ssr017 2,501,334 GGTTAAGCAGACGATGGAAGTAA TATAGGGGAAATCATCTCAAGCA
cnu_ssr381 4,003,395 TGCTTTTAACCAAACTCAAACG TGCAGAGAGGCAAGTTTCAA
sau_um392 5,882,422 GCCAGTTTCGTCTTCTTCTCTG GAAGTCACACCCCCATCTCTATC
BrID90500 6,762,400 ATGGGCTTTGTTTGGGTAAA TGAAAGAGACAAGCTGGCAA
BrID10825 9,949,084 CAATGTGTTCGATGGAATG TAGTGTGCGAACAGATTCAG
ACMP00841 13,132,010 CAGTGGCAACAACATCAACA CTTCACATCGTCTCCACCAC
BrID101239 13,226,921 TCCACACAGAAGATAACTGGT GAGATGACATTTTCGCTGAC
cnu_ssr458 16,415,511 GGGGTGAATCTTGGATGAGG CTGACGGATTCCCAACGAAT
sau_um366 18,549,687 TTCTCCTCGTATCACCACTCCT GCCTACGTCTTCTACAGCGAGAT
niab_ssr082 20,079,421 CATTTCCCCGTGACTATCTG CGTCTTCATCTCAATCTCGC
sau_um551 21,619,807 GTCCATCTCCTACCTGCTCCA GTTTTGAGCCGAATAATGGTTG
hri_mBRMS007 23,268,922 AAATTGTTTCTCTTCCCCAT GTGTTAGGGAGCTGGAGAAT
A06 BrID10395 1,513,120 GCTGACATGTACCTTTTGAA CATCTAAGACCGAGTCAAGC
sau_um278 3,092,702 GAGAACAAGAGGAGGACGCTT CCGGAGGCAAGTATCCATAAG
niab_ssr134 5,621,445 CGCAGCCTTTTGCTTCT TTGCTCTCCTGCAGCTTG
cnu_mBRPGM1016a 6,689,917 TGGAGATGGCTGTTGTTGAT AGCAGATGTCGGGAATAACC
niab_ssr049 7,659,576 GAGGAATTAACGGCGTCTTG CAGTCGCCACTACCTGGTTT
ACMP00739 10,965,852 GGTGACTGTTCCTCATCAGC ATCCCTATCCAAACCTCTCG
BrID10847 14,198,854 TCATTGCCTTACTTTGTGAC CTGACACAGGTGAATCAACA
BrID10849 14,265,494 AAAGATCTGTGGAATCATGG GGCAAACATGGGTTGATA
BrID10627 15,630,795 AACACAGATCCAATCTAGCG GTCCTTAGGCCAAGCATT
ACMP00692 17,268,545 CGAGTTGCAGAGCCAAGTAG AACGTAACGCTTCCTCTTCC
sau-um121 18,555,402 GAACCTAACGAAAGGCACCAC AGTGAGGGTAGACAGGGAGAGAG
cnu_ssr220 21,896,695 ATCAGAACCGAATCCGACCA CAATGGTTGCAATGTTATTTGGA
sau-um415 22,971,940 ACGCAAAGAGAGCGAAAGAGTC GGTCTTAATCGCATGGAATCCG
sau-um616 23,447,329 ATTACCTATTGACCCCACACCAC GACGTAGAACAAGTGAGAAGGGA
A07 ACMP00261 1,018,274 AAGCCTCGACTTTGGAAGAT ATCTCCGTCTGGTCTCGTCT
At2g06510 2,516,307 GATCGGGTTAAGTCAGGACA ATGGTCTCCATGTTCAGCAC
ACMP00785 4,675,451 TGGCTCTGTTTCCTTCTCCT AAGGGATTGATCGGAACTTG
BrID10283 8,743,728 CGGTTAGGTCGTAACTCGTA CTCTTCATACGCAAGTCTTT
BrID10487 11,667,757 TCCCTTACAAGTTCATGGAT ATGGTAGCAACAAAACCAGT
nia_m063 12,010,219 GAAGAAACTCGGTGGGGAGT AAAGAGTTCCGAAAATGGGC
cnu_ssr511 14,701,383 TGTGGACGAGAAACTGAGGA TGAGATACTGGTGCGTGTGG
cnu_ssr044 16,404,302 TGTTTTGATCTTTACTGTTTTTGGA AATGTTTTTATATCACTATTGCCAAAT
cnu_ssr048 18,226,238 TTCTCCATGCTGTTCAATTCAC CATGAAAAATCGACCTTATTCCA
cnu_ssr516 20,127,600 ACTTGCCTTAGCCAGCAGCG AAGATTTTGTGTTGTGGTCTGGTGA
cnu_ssr1566 22,103,544 GTCAGACTCGGATGGCTTG TAGGAGCAGTTGGTTCAGCA
A08 ACMP00659 1,364,408 CCGCCTCAATCTCTAGCTTT CTCGTTCACCACCTCTGCTA
ACMP00551 2,716,097 CAGCAATGGTGGACATCTCT AACAAGACCGGAACCATCTC
染色体
Chr.
标记名称
Marker name
物理位置
Physical
location (Mb)
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
A08 BrID90197 4,203,640 TGTTCAAACTTCCCACCCTC GTGAGCCCAAAAGTTCCTGA
BrID10839 6,657,012 AGGAACAATACCCATTTGTG GGTGTTTGTGTGTTCGGTA
BrID101199 7,356,083 ATGATGGAGATGGACATTTG TGTATCGGCAGAAGAATCTC
sau_um192 10,064,084 TCCCTCCTCTCTACGTCTTCTTC CTTCTCTGTAACGGGCTTTGAC
sau_um044 14,603,121 CGATTCATCCATCCATCACC CTATAGGACCGATCCCGTCTTT
cnu_ssr432 16,431,751 CAAACCTCGTCCTAAGCAGAA ACCTGAAGATGACCCAGACG
sau_um077 17,469,120 CTGATCCTCGAAGAAGACAGTGC CTTCATGCACTTGAGGAGTCG
cnu_ssr176 18,202,437 TGTAAGTCACGTTCGGTTTGCT AGGCATGTATGGAGATGTAGAGTGA
BRMS-198 21,521,373 CGAGAGCAGTTAGGAAGCTTATAGA AGAGATACTCTGTCCTCCACCTCTT
A09 nia_m010 1,815,031 GGTTGACGTCTCATTGTGTTCTT TAGCTTTGCTCACTTTTCACTCC
sau_um219 3,482,038 CGCAGCTTCCTCTGTATTGCTA GGCTCTCACCAGAGTCAAGTCTA
cnu_ssr157 5,671,382 CCGCAGTTGATCCATTAGCC ACGCTGCATCCACATGAAAC
sau_um368 6,944,590 AGCCCCGTCTCTTTCACTGTAT GATCTAGGGTCTCGTCGACTTTG
nia_m022 10,330,441 CTCTCGTCTCGGAGGATCTAAA GTGAGAGTGGTTGCTGAGTGAG
sau_um019 13,593,016 GGTCCTGCCATTCCTATTCTCT CATGCCACGTCAGCAATATG
sau_um138 16,538,853 CGCACACCATTTCCACAAAC GAGATGAATGTGCGTCTCCTG
ACMP00188 18,078,993 GATTCCTCTCCACGACCATT TCTCCCAAATCGGTTCTTTC
sau_um101 21,178,401 GATCTTATCGTGCCCATTGC CTCCTCATAGGGCTCCTTTTTC
cnu_ssr598 24,440,145 TTCACCGTCTGCTCTTATCG CTGCTCCCATACGATCCACT
cnu_ssr016 27,461,366 GGTGAATGGAATCTTGTCTTGA CCCAACAATCCCAGAAACAC
cnu_ssr119 30,057,081 ACACCTACTTGTTTCCATCCAAAT CGGGTATTTGCGTTGTTTCC
sau_um187 33,166,753 GTCCTCCTCAACCTCATCATCA AGTCGAGAGTAACGGGAAGAGAG
sau_um105 36,739,828 CCTTTCTAATGGGAAGCGGTAG CTCCCTCTTCGAATTGACTCAC
A10 sau_um126 2,528,134 AGAACACGCTCCTAACCATCAG TAGCTACGAGGCCTTAGAGGGTA
niab_ssr034 4,065,070 GTGCAAGTCAGTGCCAAAGA CTCGGTGGTTGAGTGAAGGT
sau_um433 7,037,138 AAGAGTCCACAGCAGGAGATTG GGGATGAGAAAAAGACAGGTGG
sau_um216 10,127,674 CTTTCTTCTCTCCGTCGTTCC AAGGTTAGGGTTAGAGAAGCCG
niab_ssr123 11,313,024 GGATCTAGAAACCCCTTCACA ATCTTGTGTCGGGCAGATAA
Nniab_ssr122 12,936,001 ACTTCTCCGGCTGGATACTC CCGTTTAAACTTGCGTTTGT
niab_ssr009 15,004,910 TTCCCAAGCTTGCTGGTACT GAGATTTCCCTCGCTTGATG
sau_um310 15,341,225 TCTTTTCCATCTCTCTACCATCATC CCTATGAGAGGAAGACCGAGACT

Fig. 1

Genetic improvement route of Huayouza 62 restorer line Bing409 for resistance against clubroot disease"

Table 1

Linkage markers of CRb resistant locus and Pol.CMS restore gene Rfp"

标记名称
Marker name
标记类型
Marker type
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
物理位置
Physical location (Mb)
CRb_ssr541 SSR TGCTTGAGCAGAAACAATATCAA TTGCGCATCTCTGTTTAGCTT A03: 23693689
CRb_ssr413 SSR ATTGTGCCGTCGGAATTAAA GATGATTAGAAAAGGTGTCTATTGC A03: 23762587
CRb_ssr01 SSR TCGAGGTGGTTACAATCCAA CAATGCGGATCTACCTCTCA A03: 24031219
Rfp_ssr52 SSR TCAACAACAACAGCCTTTCG GGAAGAAGTCGCTTCCTGTG A09: 34418209
Rfp_rt5 功能标记FM GGGATGCGATCCTGATATTTG GAGAGAGGCTACAGAACAAACT A09: 34485601

Table 2

Uniformly covered markers on genome A of B. napus"

染色体
Chr.
标记数目Marker
numbers
标记间平均间距
Average distance of adjacent markers (Mb)
A01 10 2.95
A02 11 2.30
A03 22 2.01
A04 10 2.07
A05 13 1.92
A06 14 1.83
A07 11 2.11
A08 11 2.02
A09 14 2.69
A10 8 1.83
总数Total 124

Table S2

Number of plants of F1, BC1, and two parents at different disease resistant levels"

发病等级
Disease level
调查株数Number of plants investigated
F1 BC1 CR Shinki Bing409
4级 Level 4 0 19 0 35
3级 Level 3 0 0 0 12
2级 Level 2 0 0 0 0
1级 Level 1 0 0 0 0
0级 Level 0 31 24 30 0

Fig. 2

Clubroot disease resistance identification of F1 and BC1 a: phenotypic identification of F1 generation after P. brassicae pathotype inoculation; b: disease index of F1 generation; c: phenotypic identification of BC1 generation after inoculation; d: disease index of BC1 generation; e: genotypic identification of BC1 generation. A represents genotype of Bing409, B represents genotype of CR Shinki, and H represents heterozygous genotype; S represents susceptibility phenotype, and R represents resistance phenotype."

Fig. 3

Genetic background recovery rates of the resistant plants selected from BC1F1 to BC3F1 generations The numbers in parentheses represent the total plants containing resistant locus after foreground selection."

Table 3

Detail of foreground and background selection in BC1 to BC3"

世代
Generation
抗病位点前景选择Foreground selection 背景筛选标记数
No. of markers used to background selection
最终保留株数
No. of
selected
plants
背景回复率
Genetic
background
recovery rates (%)
用途
Application
检测株数
No. of
plants tested
筛选标记数
No. of markers
入选株数
No. of
selected plants
BC1F1 492 5 256 118 5 64-71 回交Backcross
BC2F1 232 5 107 36 4 73-93 回交Backcross
BC3F1 267 5 139 5 6 87-97 回交、自交
Backcross, self-cross

Fig. 4

Clubroot disease resistance evaluation and restore gene Rfp identification of BC3 plants a: phenotypic identification of BC3 after clubtoot pathogen inoculation; b: disease index of BC3 generation; c: genotypic identification of BC3 generation; d: identification of restore gene Rfp of resistant plants in BC3 generation. A represents genotype of Bing409, B represents genotype of CR Shinki, and H represents heterozygous genotype; S represents susceptibility phenotype, and R represents resistance phenotype."

Table S3

Number of resistant materials Bing409R inoculated with P. brassica in different areas of China"

根肿菌
P. brassica
收集地点
Collection place
Bing409R接菌株数Number of inoculated Bing409R plants (R/S) 对照
Control (R/S)
重复1 Repeat 1 重复2 Repeat 2 重复3 Repeat 3
Y-TC 云南腾冲Tengchong, Yunnan 15 (3/12) 24 (5/19) 26 (5/21) 19 (0/19)
Y-XC 云南楚雄Xiongchu, Yunnan 19 (16/3) 25 (19/6) 25 (21/4) 25 (0/25)
Y-BS 云南保山Baoshan, Yunnan 24 (5/19) 26 (6/20) 23 (4/19) 20 (0/20)
Y-LC 云南临沧Lincang, Yunnan 20 (11/9) 25 (15/10) 26 (16/10) 21 (0/21)
Y-DH 云南德宏Dehong, Yunnan 20 (4/16) 26 (6/20) 24 (5/19) 25 (0/25)
H-ES 湖北恩施Enshi, Hubei 17 (4/13) 26 (6/20) 20 (3/17) 22 (0/22)
H-YC 湖北宜昌Yichang, Hubei 23 (23/0) 22 (22/0) 26 (26/0) 22 (0/22)
H-ZJ 湖北枝江Zhijiang, Hubei 22 (22/0) 21 (21/0) 19 (19/0) 20 (0/22)
S-DY 四川德阳Deyang, Sichuan 26 (26/0) 22 (22/0) 24 (24/0) 22 (0/22)
S-PZ 四川彭州Pengzhou, Sichuan 27 (27/0) 22 (22/0) 23 (23/0) 20 (0/20)
S-GH 四川广汉Guanghan, Sichuan 25 (25/0) 23 (23/0) 23 (23/0) 25 (0/22)
S-CD 四川成都Chengdu, Sichuan 24 (24/0) 20 (20/0) 19 (19/0) 25 (0/22)
A-HS 安徽黄山Huangshan, Anhui 17 (17/0) 19 (19/0) 23 (23/0) 21 (0/22)

Table 4

Evaluation of resistance of Bing409R to P. brassica in different regions of China"

根肿菌编号
No. of P. brassica
收集地点
Collection locations
409R相对病情指数Relative disease index of 409R 抗性评价
Resistance evaluation
重复1 Repeat 1 重复2 Repeat 2 重复3 Repeat 3
Y-TC 云南腾冲Tengchong, Yunnan 40 40 40 S (40±0)
Y-XC 云南楚雄Xiongchu, Yunnan 8 12 8 R (9±1)
Y-BS 云南保山Baoshan, Yunnan 40 38 41 S (40±1)
Y-LC 云南临沧Lincang, Yunnan 23 20 19 MS (23±1)
Y-DH 云南德宏Dehong, Yunnan 40 38 40 S (39±1)
H-ES 湖北恩施Enshi, Hubei 38 38 43 S (40±1)
H-YC 湖北宜昌Yichang, Hubei 0 0 0 I (0±0)
H-ZJ 湖北枝江Zhijiang, Hubei 0 0 0 I (0±0)
S-DY 四川德阳Deyang, Sichuan 0 0 0 I (0±0)
S-PZ 四川彭州Pengzhou, Sichuan 0 0 0 I (0±0)
S-GH 四川广汉Guanghan, Sichuan 0 0 0 I (0±0)
S-CD 四川成都Chengdu, Sichuan 0 0 0 I (0±0)
A-HS 安徽黄山Huangshan, Anhui 0 0 0 I (0±0)

Table 5

Seeds quality determination of different resistant lines derived from BC3F3 generation"

抗病株系
Resistant lines
含油量
Oil content (%)
芥酸
Erucic acid (%)
硫甙
Glucosinolate (μmol g-1)
622-22 41.81 0.17 21.76
622-37 40.05 0 24.61
623-30 40.99 0 23.49
624-04 43.63 0.34 26.54
625-17 41.11 0 24.32
630-11 40.65 0 23.33
18ZP06 42.66 0 23.69
18ZP07 42.44 0 30.05
18ZP08 41.99 0.08 28.61
409S01 (CK) 41.06 0 22.76
409S02 (CK) 40.38 0 24.31
409S03 (CK) 43.78 0 23.78

Fig. 5

Phenotypic identification of F1 in Zhijiang diseased fields The disease resistance of Huayouza 62R (F1) was significantly better than its parent Bing409S."

Fig. 6

Huayouza 62R new lines were integrated and demonstrated in Zhijiang infested fields"

Table 6

Examination of main yield characteristics and determination of yield of clubroot resistant hybrid Huayouza 62R"

品种
Variety
株高
Plant height (cm)
有效分枝数
Effective branch number
单株有效角果数
Silique number per plant
每角粒数
Seeds per silique
千粒重
Thousand-seed weight (g)
单株产量
Yield per plant (g)
小区产量
Yield per plot
(kg)
华油杂12
Huayouza 12
170.8 5.6 162.2 20.9 3.41 11.6 6.367
华油杂62R
Huayouza 62R
161.2 5.8 176.8 18.1 3.62 11.6 6.267
[1] Howard R J, Strelkov S E, Harding M W. Clubroot of cruciferous crop-new perspectives on an old disease. Histopathology, 2010,32:35-42.
doi: 10.1046/j.1365-2559.1998.00319.x pmid: 9522214
[2] 孙保亚, 沈向群, 郭海峰, 周永红. 十字花科植物根肿病及抗病育种研究进展. 中国蔬菜, 2005, (4):34-37.
Sun B Y, Shen X Q, Guo H F, Zhou Y H. Research progress in clubroot of crucifers and resistance breeding. China Veget, 2005, (4):34-37 (in Chinese with English abstract).
[3] Donald C, Porter I. Intergrated control of clubroot. J Plant Growth Regul, 2009,28:289-303.
doi: 10.1007/s00344-009-9094-7
[4] 王靖, 黄云, 李小兰, 黎怀忠. 十字花科根肿病研究进展. 植物保护, 2011,37(6):153-158.
Wang J, Huang Y, Li X L, Li H Z. Research progress in clubroot of crucifers. Plant Protect, 2011,37(6):153-158 (in Chinese with English abstract).
[5] Diederiehsen E, Frauen M, Linders E G A, Hatakeyama K, Hirai M. Status and perspectives of clubroots resistance breeding in crucifer crops. J Plant Growth Regul, 2009,28:265-281.
doi: 10.1007/s00344-009-9100-0
[6] Yoshikawa H. Studies on breeding of clubroot resistance in cole [Cruciferae] crops. Bull Natl Res Inst Veg Ornam Plants Tea, 1993,A7:1-165.
[7] Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Fujimura M, Nunome T, Fukuoka H, Matsumoto S, Hirai M. Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Woronin) in C L. Theor Appl Genet, 2003,107:997-1002.
pmid: 12955203
[8] Sakamoto K, Saito A, Hayashida N, Taguchi G, Matsumoto E. Mapping of isolate-specific QTLs for clubroot resistance in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Theor Appl Genet, 2008,117:759-767.
doi: 10.1007/s00122-008-0817-0 pmid: 18612625
[9] Piao Z Y, Deng Y Q, Choi S R, Park Y J, Lim Y P. SCAR and CAPS mapping of CRb, a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage (Brassica rapa ssp. pekinensis). Theor Appl Genet, 2004,108:1458-1465.
doi: 10.1007/s00122-003-1577-5 pmid: 14997298
[10] Hatakeyama K, Suwabe K, Tomita R N, Kato T, Nunome T, Fukuoka H, Matsumoto S. Identifcation and characterization of Crr1a, a gene for resistance to clubroot disease (Plasmodiophora brassicae Woronin) in Brassica rapa L. PLoS One, 2013,8:e54745.
doi: 10.1371/journal.pone.0054745 pmid: 23382954
[11] Ueno H, Matsumoto E, Aruga D, Kitagawa S, Matsumura H, Hayashida N. Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa. Plant Mol Biol, 2012,80:621-629.
doi: 10.1007/s11103-012-9971-5 pmid: 23054353
[12] Hatakeyama K, Niwa T, Kato T, Ohara T, Kakizaki T, Matsumoto S. The tandem repeated organization of NB-LRR genes in the clubroot-resistant CRb locus in Brassica rapa L. Mol Genet Genomics, 2017,292:397-405.
doi: 10.1007/s00438-016-1281-1 pmid: 28013378
[13] Diederichsen E, Beckmann J, Schondelmeier J, Dreyer F. Genetics of clubroot resistance in Brassica napus ‘Mendel’. Acta Hortic, 2006,706:307-312.
[14] Hwang S F, Strelkov S E, Feng J, Gossen B D, Howard R J. Plasmodiophora brassicae: a review of an emerging pathogen of the Canadian canola (Brassica napus) crop. Mol Plant Pathol, 2012,13:105-113.
doi: 10.1111/j.1364-3703.2011.00729.x pmid: 21726396
[15] 符明联, 杨玉珠, 李根泽, 罗延青, 奚俊玉, 徐海燕, 张晓兰, 原小燕, 杨卫国. 不同油菜品种对根肿病的抗性分析. 华中农业大学学报, 2011,30:443-447.
Fu M L, Yang Y Z, Li G Z, Luo Y Q, Xi J Y, Xu H Y, Zhang X L, Yuan X Y, Yang W G. Analysis of clubroot resistance of different rapeseed varieties. J Huazhong Agric Univ, 2011,30:443-447 (in Chinese with English abstract).
[16] 季海雯, 任莉, 陈坤荣, 徐理, 刘凡, 孙超超, 李俊, 刘胜毅, 方小平. 油菜根肿病病原主要生理小种和品种抗病性鉴定. 中国油料作物学报, 2013,35:301-306.
Ji H W, Ren L, Chen K R, Xu L, Liu F, Sun C C, Li J, Liu S Y, Fang X P. Identification of physiological races of club root and resistance of rape cultivars to Plasmodiophora brassicae. Chin J Oil Crop Sci, 2013,35:301-306 (in Chinese with English abstract).
[17] 刘勇, 黄小琴, 柯绍英, 刘红雨. 四川主栽油菜品种根肿病抗性研究. 中国油料作物学报, 2009,31:90-93.
Liu Y, Huang X Q, Ke S Y, Liu H Y. Evaluation of resistance of rapeseed varieties to club root infected by Plasmodiophora brassicae in Sichuan. Chin J Oil Crop Sci, 2009,31:90-93 (in Chinese with English abstract).
[18] 余青青, 田露申, 牛应泽, 郭世星. 人工合成甘蓝型油菜抗根肿病遗传研究初报. 西南农业学报, 2008,21:1313-1315.
Yu Q Q, Tian L S, Niu Y Z, Guo S H. Preliminary study on inheritance of clubroot resistance in a resythesized Brassica napus line. Southwest China J Agric Sci, 2008,21:1313-1315 (in Chinese with English abstract).
[19] 战宗祥, 江莹芬, 朱紫媛, 张春沙, 杨庆勇, 李倩, 侯照科, 龚建芳, 程雨贵, 吴江生, 傅廷栋, 周永明, 朴钟云, 张椿雨. 与位点PbBa8.1紧密连锁分子标记的开发及甘蓝型油菜根肿病抗性育种. 中国油料作物学报, 2015,37:766-771.
Zhan Z X, Jiang Y F, Zhu Z Y, Zhang C S, Yang Q Y, Li Q, Hou Z K, Gong J F, Cheng Y G, Wu J S, Fu T D, Zhou Y M, Piao Z Y, Zhang C Y. Development of close linked marker to PbBa8.1 conferring canola resistance to Plasmodiophora brassicae. Chin J Oil Crop Sci, 2015,37:766-771 (in Chinese with English abstract).
[20] 周永红, 孙保亚, 沈向群. 大白菜根肿病抗病接种浓度的研究. 辽宁农业科学, 2007, (3):34-35.
Zhou Y H, Sun B Y, Shen X Q. Study on inoculation concentration of clubroot resistance in Chinese cabbage. Liaoning Agric Sci, 2007, (3):34-35 (in Chinese with English abstract).
[21] 汪春, 李凯旋, 彭衍彪, 檀根甲, 鲍周明, 方春华. 安徽油菜根肿病菌生理小种鉴定及品种抗病性评价. 安徽农业大学学报, 2014,41:772-776.
Wang C, Li K X, Peng Y B, Tan G J, Bao Z M, Fang C H. Identification of physiological races of Plasmodiophora brassicae and resistance of rape cultivars to club root in Anhui. J Anhui Agric Univ, 2014,41:772-776 (in Chinese with English abstract).
[22] 杨宗辉. 甘蓝型油菜波里马细胞质雄性不育恢复基因的图位克隆和功能研究. 华中农业大学博士学位论文, 湖北武汉, 2016.
Yang Z H. Map-based Cloning and Function Analysis of the Restorer Gene of Polima cytoplasmic Male Sterility in Brassica napus. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2016 (in Chinese with English abstract).
[23] Chai A L, Xie X W, Shi Y X, Li B J. Research status of clubroot (Plasmodiophora brassicae) on cruciferous crops in China. Can J Plant Pathol, 2014,36:142-153.
[24] Zheng J, Wang X L, Li Q, Yuan S, Wei S Q, Tian X Y, Huang Y, Wang W M, Yang H. Characterization of five molecular markers for pathotype identification of the clubroot pathogen Plasmodiophora brassicae. Phytopathology, 2018,108:1486-1492.
doi: 10.1094/PHYTO-11-17-0362-R pmid: 29996697
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[3] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[4] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[5] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[6] XU Yi, ZHANG Li-Lan, QI Jian-Min, ZHANG Lie-Mei, ZHANG Li-Wu. Genomics and genetic improvement in main bast fiber crops: advances and perspectives [J]. Acta Agronomica Sinica, 2021, 47(6): 997-1019.
[7] LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798.
[8] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
[9] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[10] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[11] TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426.
[12] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[13] WEI Li-Juan, SHEN Shu-Lin, HUANG Xiao-Hu, MA Guo-Qiang, WANG Xi-Tong, YANG Yi-Ling, LI Huan-Dong, WANG Shu-Xian, ZHU Mei-Chen, TANG Zhang-Lin, LU Kun, LI Jia-Na, QU Cun-Min. Genome-wide association analysis reveals zinc-tolerant loci of rapeseed at germination stage [J]. Acta Agronomica Sinica, 2021, 47(2): 262-274.
[14] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[15] WANG Zhen, ZHANG Xiao-Li, MENG Xiao-Jing, YAO Meng-Nan, MIU Wen-Jie, YUAN Da-Shuang, ZHU Dong-Ming, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Identification of upstream regulators for mitogen-activated protein kinase 7 gene (BnMAPK7) in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(12): 2379-2393.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!