Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (2): 262-274.doi: 10.3724/SP.J.1006.2021.04037
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WEI Li-Juan(), SHEN Shu-Lin, HUANG Xiao-Hu, MA Guo-Qiang, WANG Xi-Tong, YANG Yi-Ling, LI Huan-Dong, WANG Shu-Xian, ZHU Mei-Chen, TANG Zhang-Lin, LU Kun, LI Jia-Na*(), QU Cun-Min*()
[1] |
Koeppe D E. The uptake, distribution, and effect of cadmium and lead in plants. Sci Total Environ, 1977,7:197-206.
doi: 10.1016/0048-9697(77)90043-2 |
[2] |
Sinclair S A, Kramer U. The zinc homeostasis network of land plants. Biochim Biophys Acta, 2012,1823:1553-1567.
doi: 10.1016/j.bbamcr.2012.05.016 pmid: 22626733 |
[3] | Emamverdian A, Ding Y, Mokhberdoran F, Xie Y. Heavy metal stress and some mechanisms of plant defense response. Sci World J, 2015,2015:756120. |
[4] |
Broadley M R, White P J, Hammond J P, Zelko I, Lux A. Zinc in plants. New Phytol, 2007,173:677-702.
doi: 10.1111/j.1469-8137.2007.01996.x pmid: 17286818 |
[5] |
Cambrollé J, Mancilla-Leytón J M, Muñoz-Vallés S, Luque T, Figueroa M E. Zinc tolerance and accumulation in the salt-marsh shrub Halimione portulacoides. Chemosphere, 2012,86:867-874.
doi: 10.1016/j.chemosphere.2011.10.039 pmid: 22099539 |
[6] | 龚红梅, 李卫国. 锌对植物的毒害及机理研究进展. 安徽农业科学, 2009,37:14009-14015. |
Gong H M, Li W G. Research progress on the toxicity of zinc to plants and its mechanism. J Anhui Agric Sci, 2009,37:14009-14015 (in Chinese with English abstract). | |
[7] | Belouchrani A S, Mameri N, Abdi N, Grib H, Lounici H, Drouiche N. Phytoremediation of soil contaminated with Zn using canola (Brassica napus L.). Ecol Eng, 2016,95:43-49. |
[8] |
Gasic K, Korban S S. Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta, 2007,225:1277-1285.
doi: 10.1007/s00425-006-0421-y pmid: 17086401 |
[9] | Cojocaru P, Gusiatin Z M, Cretescu I. Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus). Environ Sci Pollut Res, 2016,23:10693-10701. |
[10] | Salt D E, Blaylock M, Kumar N, Dushenkov V, Ensley B D, Chet I, Raskin I. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol, 1995,13:468-474. |
[11] | Turan M, Bringu A. Phytoremediation based on canola (Brassica napus L.) and Indian mustard (Brassica juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb, and Zn. Plant Soil Environ, 2007,53:7-15. |
[12] | 曹春信, 刘新华, 周琴, 江巧君, 袁名安, 江海东. 过量锌对油菜生长、产量和养分吸收的影响及锌在植株地上部器官中的富集特征. 浙江农业学报, 2011,23:781-791. |
Cao C X, Liu X H, Zhou Q, Jiang Q J, Yuan M A, Jiang H D. Effects of excess zinc strss on growth yield nutrient uptake and enrichment characteristics of zinc in above-ground organs of rapeseed (Brassica napus). Acta Agric Zhejiangenisis, 2011,23:781-791 (in Chinese with English abstract). | |
[13] |
Zhang J, Chen K, Pang Y L, Naveed S A, Zhao X Q, Wang X Q, Wang Y, Dingkuhn M, Pasuquin J, Li Z K, Xu J L. QTL mapping and candidate gene analysis of ferrous iron and zinc toxicity tolerance at seedling stage in rice by genome-wide association study. BMC Genomics, 2017,18:828.
pmid: 29078746 |
[14] | Chen L L, Wan H P, Qian J L, Guo J B, Sun C M, Wen J, Yi B, Ma C Z, Tu J X, Song L Q, Fu T D, Shen J X. Genome-wide association study of cadmium accumulation at the seedling stage in rapeseed (Brassica napus L.). Front Plant Sci, 2018,9:375. |
[15] | Zhang F G, Xiao X, Yan G X, Hu J H, Cheng X, Li L X, Li H G, Wu X M. Association mapping of cadmium-tolerant QTLs in Brassica napus L. and insight into their contributions to phytoremediation. Environ Exp Bot, 2018,155:420-428. |
[16] | 曲存民, 马国强, 朱美晨, 黄小虎, 贾乐东, 王书贤, 赵会彦, 徐新福, 卢坤, 李加纳, 王瑞. 砷胁迫下甘蓝型油菜苗期根、下胚轴和鲜重的全基因组关联分析. 作物学报, 2019,45:175-187. |
Qu C M, Ma G Q, Zhu M C, Huang X H, Jia L D, Wang S X, Zhao H Y, Xu X F, Lu K, Li J N, Wang R. Genome-wide association of roots, hypocotyls and fresh weight at germination stage as stress in Brassica napus L. Acta Agron Sin, 2019,45:175-187 (in Chinese with English abstract). | |
[17] |
Xu J, Chai T Y, Zhang Y X, Lang M L, Han L. The cation-efflux transporter BjCET2 mediates zinc and cadmium accumulation in Brassica juncea L. leaves. Plant Cell Rep, 2009,28:1235-1242.
pmid: 19495770 |
[18] | Song Y, Hudek L, Freestone D, Puhui J, Michalczyk A A, Senlin Z, Ackland M L. Comparative analyses of cadmium and zinc uptake correlated with changes in natural resistance-associated macrophage protein (NRAMP) expression in Solanum nigrum L. and Brassica rapa. Environ Chem, 2014,11:653-660. |
[19] | Lichten L A, Cousins R J. Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr, 2009,29:153-176. |
[20] | Li N N, Xiao H, Sun J J, Wang S F, Wang J C, Chang P, Zhou X B, Lei B, Lu K, Luo F, Shi X J, Li J N. Genome-wide analysis and expression profiling of the HMA gene family in Brassica napus under Cd stress. Plant Soil, 2018,426:365-381. |
[21] |
Wang J W, Li Y, Zhang Y X, Chai T Y. Molecular cloning and characterization of a Brassica juncea yellow stripe-like gene, BjYSL7, whose overexpression increases heavy metal tolerance of tobacco. Plant Cell Rep, 2013,32:651-662.
pmid: 23430174 |
[22] | Takahashi R, Bashir K, Ishimaru Y, Nishizawa N K, Nakanishi H. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal Behav, 2012,7:1605-1607. |
[23] | 张蕊, 邓文亚, 杨柳, 王亚萍, 肖芳枝, 禾健, 卢坤. 盐胁迫下甘蓝型油菜发芽期下胚轴和根长的全基因组关联分析. 中国农业科学, 2017,50:15-35. |
Zhang R, Deng W Y, Yang L, Wang Y P, Xiao F Z, He J, Lu K. Genome-wide association study of root length and hypocotyl length at germination stage under saline conditions in Brassica napus. Sci Agric Sin, 2017,50:15-35 (in Chinese with English abstract). | |
[24] | Munns R, James R A. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil, 2003,253:201-218. |
[25] | Qu C M, Li M, Duan X J, Fan J H, Jia L D, Zhao H Y, Lu K, Li J N, Xu X F, Wang R. Identification of candidate genes for seed glucosinolate content using association mapping in Brassica napus L. Genes, 2015,6:1215-1229. |
[26] | 卢坤, 王腾岳, 徐新福, 唐章林, 曲存民, 贺斌, 梁颖, 李加纳. 甘蓝型油菜结角高度与荚层厚度的全基因组关联分析. 作物学报, 2016,42:344-352. |
Lu K, Wang T Y, Xu X F, Tang Z L, Qu C M, He B, Liang Y, Li J N. Genome-wide association analysis of height of podding and thickness of pod canopy in Brassica napus. Acta Agron Sin, 2016,42:344-352 (in Chinese with English abstract). | |
[27] |
Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000,155:945-959.
pmid: 10835412 |
[28] |
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol, 2005,14:2611-2620.
pmid: 15969739 |
[29] | Hardy O J, Vekemans X. Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes, 2002,2:618-620. |
[30] | Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23:2633-2635. |
[31] |
Wen Y J, Zhang H W, Ni Y L, Huang B, Zhang J, Feng J Y, Wang S B, Dunwell J M, Zhang Y M, Wu R L. Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Brief Bioinform, 2018,19:700-712.
pmid: 28158525 |
[32] |
Chalhoub B, Denoeud F, Liu S, Parkin I A P, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T, Thi V, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H D, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953.
doi: 10.1126/science.1253435 pmid: 25146293 |
[33] | 郑喜珅, 鲁安怀, 高翔, 赵谨, 郑德圣. 土壤中重金属污染现状与防治方法. 土壤与环境, 2002,11(1):79-84. |
Zheng X K, Lu A H, Gao X, Zhao J, Zheng D S. Contamination of heavy metals in soil present situation and method. Soil Environ Sci, 2002,11(1):79-84 (in Chinese with English abstract). | |
[34] |
Zhong B, Liang T, Wang L, Li K. Applications of stochastic models and geostatistical analyses to study sources and spatial patterns of soil heavy metals in a metalliferous industrial district of China. Sci Total Environ, 2014,490:422-434.
doi: 10.1016/j.scitotenv.2014.04.127 pmid: 24875258 |
[35] | Zhang F, Xiao X, Xu K, Cheng X, Xie T, Hu J, Wu X. Genome-wide association study (GWAS) reveals genetic loci of lead (Pb) tolerance during seedling establishment in rapeseed (Brassica napus L.). BMC Genomics, 2020,21:139. |
[36] |
Zhang J, Mason A S, Wu J, Liu S, Zhang X, Luo T, Redden R, Batley J, Hu L, Yan G. Identification of putative candidate genes for water stress tolerance in canola (Brassica napus). Front Plant Sci, 2015,6:1058.
doi: 10.3389/fpls.2015.01058 pmid: 26640475 |
[37] |
Ke L, Lei W, Yang W, Wang J, Gao J, Cheng J, Sun Y, Fan Z, Yu D. Genome-wide identification of cold responsive transcription factors in Brassica napus L. BMC Plant Biol, 2020,20:62.
doi: 10.1186/s12870-020-2253-5 pmid: 32028890 |
[38] | Shahid M, Natasha , Khalid S, Abbas G, Niazi N K, Murtaza B, Rashid M I, Bibi I. Redox mechanisms and plant tolerance under heavy metal stress: genes and regulatory networks. In: Sablok G, eds. Plant Metallomics and Functional Omics. Cham: Springer, 2019. pp 71-105. |
[39] |
Jiang Y, Qiu Y, Hu Y, Yu D. Heterologous expression of AtWRKY57 confers drought tolerance in Oryza sativa. Front Plant Sci, 2016,7:145.
doi: 10.3389/fpls.2016.00145 pmid: 26904091 |
[40] |
Jiang Y, Liang G, Yu D. Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant, 2012,5:1375-1388.
pmid: 22930734 |
[41] | Chen H Y, Hsieh E J, Cheng M C, Chen C Y, Hwang S Y, Lin T P. ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element. New Phytol, 2016,211:599-613. |
[42] |
Zang D D, Li H Y, Xu H Y, Zhang W H, Zhang Y M, Shi X X, Wang Y C. An arabidopsis zinc finger protein increases abiotic stress tolerance by regulating sodium and potassium homeostasis, reactive oxygen species scavenging and osmotic potential. Front Plant Sci, 2016,7:1272.
doi: 10.3389/fpls.2016.01272 pmid: 27605931 |
[43] |
Cao H J, Huang P Y, Zhang L L, Shi Y K, Sun D D, Yan Y X, Liu X H, Dong B, Chen G Q, Snyder J H, Lin F C, Lu J P. Characterization of 47 Cys2-His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. New Phytol, 2016,211:1035-1051.
pmid: 27041000 |
[44] |
Sun N, Liu M, Zhang W, Yang W, Bei X, Ma H, Qiao F, Qi X. Bean metal-responsive element-binding transcription factor confers cadmium resistance in tobacco. Plant Physiol, 2015,167:1136-1148.
doi: 10.1104/pp.114.253096 pmid: 25624396 |
[45] |
Chen J, Yang L, Yan X, Liu Y, Wang R, Fan T, Ren Y, Tang X, Xiao F, Liu Y, Cao S. Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione- dependent pathway in Arabidopsis. Plant Physiol, 2016,171:707-719.
pmid: 26983992 |
[46] |
Liu X M, An J, Han H J, Kim S H, Lim C O, Yun D J, Chung W S. ZAT11, a zinc finger transcription factor, is a negative regulator of nickel ion tolerance in Arabidopsis. Plant Cell Rep, 2014,33:2015-2021.
doi: 10.1007/s00299-014-1675-7 pmid: 25163803 |
[47] |
Yang L, Wei Y, Na L, Zeng J Y, Han Y J, Zuo Z J, Wang S T, Zhu Y R, Zhang Y, Sun J S, Yong W. Declined cadmium accumulation in Na+/H+ antiporter (NHX1) transgenic duckweed under cadmium stress. Ecotoxicol Environ Saf, 2019,182:109397.
doi: 10.1016/j.ecoenv.2019.109397 pmid: 31299476 |
[48] | 李洋, 于丽杰, 金晓霞. 植物重金属胁迫耐受机制. 中国生物工程杂志, 2015,35(9):94-104. |
Li Y, Yu L J, Jin X X. The mechanism of heavy metal stress in plants. China Biotechnol, 2015,35(9):94-104 (in Chinese with English abstract). | |
[49] | 李小宁. 锌胁迫对小麦种子萌发及幼苗生理生化特性的影响. 西北师范大学硕士毕业论文, 甘肃兰州, 2013. |
Li X N. Effects of Zinc Stress on Seed Germination, Physiological and Biochemical Characteristics in Wheat Seedling. MS Thesis of Northwest Normal University, Lanzhou, Gansu, China, 2013 (in Chinese with English abstract). | |
[50] |
Kumar S, Trivedi P K. Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Front Plant Sci, 2018,9:751.
pmid: 29930563 |
[51] |
Ezaki B, Gardner R C, Ezaki Y, Matsumoto H. Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol, 2000,122:657-665.
doi: 10.1104/pp.122.3.657 pmid: 10712528 |
[52] |
Srivastava D, Verma G, Chauhan A S, Pande V, Chakrabarty D. Rice (Oryza sativa L.) tau class glutathione S-transferase (OsGSTU30) overexpression in Arabidopsis thaliana modulates a regulatory network leading to heavy metal and drought stress tolerance. Metallomics, 2019,11:375-389.
doi: 10.1039/c8mt00204e pmid: 30516767 |
[53] |
Zhang J, Martinoia E, Lee Y. Vacuolar transporters for cadmium and arsenic in plants and their applications in phytoremediation and crop development. Plant Cell Physiol, 2018,59:1317-1325.
doi: 10.1093/pcp/pcy006 pmid: 29361141 |
[54] |
Kim D Y, Bovet L, Maeshima M, Martinoia E, Lee Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J, 2007,50:207-218.
pmid: 17355438 |
[55] |
Korenkov V, King B, Hirschi K, Wagner G J. Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L. Plant Biotechnol J, 2009,7:219-226.
pmid: 19175521 |
[56] |
Hou X W, Tong H Y, Selby J, DeWitt J, Peng X X, He Z H. Involvement of a cell wall-associated kinase, WAKL4, in Arabidopsis mineral responses. Plant Physiol, 2005,139:1704-1716.
doi: 10.1104/pp.105.066910 pmid: 16286448 |
[1] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[2] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[3] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[4] | YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850. |
[5] | HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607. |
[6] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[7] | ZHAO Hai-Han, LIAN Wang-Min, ZHAN Xiao-Deng, XU Hai-Ming, ZHANG Ying-Xin, CHENG Shi-Hua, LOU Xiang-Yang, CAO Li-Yong, HONG Yong-Bo. Genetic dissection of the bacterial blight disease resistance in super hybrid rice RILs using genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(1): 121-137. |
[8] | WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510. |
[9] | MA Juan, CAO Yan-Yong, LI Hui-Yong. Genome-wide association study of ear cob diameter in maize [J]. Acta Agronomica Sinica, 2021, 47(7): 1228-1238. |
[10] | GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214. |
[11] | LI Hui, LI De-Fang, DENG Yong, PAN Gen, CHEN An-Guo, ZHAO Li-Ning, TANG Hui-Juan. Expression analysis of abiotic stress response gene HcWRKY71 in kenaf and transformation of Arabidopsis [J]. Acta Agronomica Sinica, 2021, 47(6): 1090-1099. |
[12] | CHEN Can, NONG Bao-Xuan, XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting, YANG Xing-Hai. Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi [J]. Acta Agronomica Sinica, 2021, 47(6): 1114-1123. |
[13] | LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798. |
[14] | TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990. |
[15] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
|