Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (2): 275-284.doi: 10.3724/SP.J.1006.2021.04105


Identification of resistance gene against phytophthora root rot in new soybean lines breeded in Henan province

ZHANG Xue-Cui1(), SUN Su-Li1(), LU Wei-Guo2, LI Hai-Chao2, JIA Yan-Yan1, DUAN Can-Xing1, ZHU Zhen-Dong1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Institute of Economic Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2020-05-12 Accepted:2020-09-13 Online:2021-02-12 Published:2020-09-28
  • Contact: ZHU Zhen-Dong E-mail:553870151@qq.com;sunsuli@caas.cn;zhuzhendong@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2016YFD0100201);Special Fund for Agro-scientific Research in the Public Interest(201303018);Program of Protection of Crop Germplasm Resources(2019NWB036-12);Scientific Innovation Program of Chinese Academy of Agricultural Sciences.


Phytophthora root rot is one of the destructive diseases affecting soybean production, which is a great threat to soybean production. Planting resistant soybean cultivars is the most effective way to control this disease. Henan province was located in the hinterland area of the summer-sowing soybean production region of Huang-Huai in China, which had the potential threat region of phytophthora root rot. The objective of this study was to screen effective resistance cultivars for disease control and resistance breeding by phenotypic identification and molecular detection of resistance gene. Sixty-four new soybean lines bred in Henan were evaluated for their resistance responses to two Phytophthora sojae isolates PsJS2 and Ps41-1 using the hypocotyls inoculation technique. The result showed that 35 lines and 16 lines were resistance to Ps41-1 and PsJS2, respectively. Sixteen lines and 10 lines were intermediate to Ps41-1 and PsJS2, respectively. And there were 16 lines resistance to both Ps41-1and PsJS2, accounting for 25% of tested lines. Sixty-four lines was detected for Phytophthora resistance gene by using molecular marker WZInDel11 co-segregating with a resistance gene RpsZheng. The results showed that, 13 of 16 lines resistant to both PsJS2 and Ps41-1 contain target band of WZInDel11, while 5 lines resistant to one of two P. sojae isolates show segregating to P. sojae produced heterozygous bands. The homozygous resistant plants of these lines segregating for resistance could be accurately detected by marker WZInDel11, and further were directly developed into homozygous resistant lines. Combining the results of pedigree analysis, it was speculated that two lines might contain the resistance gene RpsZheng, two lines might contain RpsYD29, and 14 lines might contain RpsZheng or its allele. In conclusion, the results indicated that the new soybean lines cultivated in Henan Province had excellent resistance sources to P. sojae. This study provides important information for disease control and resistance breeding.

Key words: Glycine max, phytophthora root rot, lines, resistance, molecular marker

Table 1

Phenotypic reaction of new soybean lines against two Phytophthora sojae isolates and their results of detection using marker WZInDel11 co-segregated with Rpszheng"

Fig. 1

Percentage of soybean lines resistance to two isolates of Phytophthora sojae, Ps41-1 and PsJS2 R: resistant; I: intermediate; S: susceptible."

Fig. 2

Detection of some soybean lines using marker WZInDel11 Williams and Zheng 97196 are the controls of susceptible and resistant varieties, respectively. Luodou 16106, Zhengdou 1304, Luodou 16095, Zhoudou 47, and Zhengdou 1526 are all the resistant lines. Zhoudou 39, Luodou 1420, Shangdou 191, Pudou 103, and Wanhuang 5 are all the susceptible lines. Zheng 15234, Luo 8825, Luodou 8816, Zhoudou 37, and Fandou 22 are the lines segregated to Phytophthora sojae."

Fig. 3

Detection of marker WZInDel11 in ten plants of soybean line Luodou 8816 Williams and Zheng 97196 are the controls of susceptible and resistant varieties, respectively. Luodou 8816-S indicates plant susceptible to Phytophthora sojae. Luodou 8816-R indicates plant resistance to P. sojae."

[1] 查霆, 钟宣伯, 周启政, 何梦迪, 汪桂凤, 尤金华, 汪自强, 唐桂香. 我国大豆产业发展现状及振兴策略. 大豆科学, 2018,37:458-463.
Zha T, Zhong X B, Zhou Q Z, He M D, Wang G F, You J H, Wang Z Q, Tang G X. Development status of China’s soybean industry and strategies of revitalizing. Soybean Sci, 2018,37:458-463 (in Chinese with English abstract).
[2] Dorrance A E. Management of Phytophthora sojae of soybean: a review and future perspectives. Can J Plant Pathol, 2018,40:210-219.
[3] 沈崇尧, 苏彦纯. 中国大豆疫霉病菌的发现及初步研究. 植物病理学报, 1991,21:298.
Shen C Y, Su Y C. Discovery and preliminary study of Phytophthora sojae in China. Acta Phytopathol Sin, 1991,21:298 (in Chinese with English abstract).
[4] Zhu Z, Wang H, Wang X, Chang R, Wu X. Distribution and virulence diversity of Phytophthora sojae in China. Agric Sci China, 2003,3:793-799.
[5] Chen X R, Wang Y C. Phytophthora sojae. In: Wan F H, Jiang M X, Zhan A B, eds. Biological Invasions and Its Management in China. Germany: Springer, 2017. pp 199-223.
[6] Tian M, Zhao L, Li S, Huang J, Sui Z, Wen J, Li Y. Pathotypes and metalaxyl sensitivity of Phytophthora sojae and their distribution in Heilongjiang, China 2011-2015. J Gen Plant Pathol, 2016,82:132-141.
[7] Sugimoto T, Kato M, Yoshida S, Matsumoto I, Kobayashi T, Kaga A, Hajika M, Yamamoto R, Watanabe K, Aino M, Matoh T, Walker D R, Biggs A R, Ishimoto M. Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans. Breed Sci, 2012,61:511-522.
[8] Zhong C, Sun S, Li Y, Duan C, Zhu Z. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean. Theor Appl Genet, 2018,131:525-538.
pmid: 29138903
[9] Zhong C, Sun S, Yao L, Ding J, Duan C, Zhu Z. Fine mapping and identification of a novel Phytophthora root rot resistance locus RpsZS18 on chromosome 2 in soybean. Front Plant Sci, 2018,9:44.
pmid: 29441079
[10] Zhong C, Li Y, Sun S, Duan C, Zhu Z. Genetic mapping and molecular characterization of a broad-spectrum Phytophthora sojae resistance gene in Chinese soybean. Int J Mol Sci, 2019,20:1809.
[11] Schmitthenner A F. Problems and progress in control of Phytophthora root rot of soybean. Plant Dis, 1985,69:362-368.
[12] Yang B, Wang Q Q, Jing M F, Guo B D, Wu J W, Wang H N, Wang Y, Lin L, Wang Y, Ye W W, Dong S M, Wang Y C. Distinct regions of the Phytophthora essential effector Avh238 determineits function in cell death activation and plant immunity suppression. New Phytol, 2017,214:361-375.
doi: 10.1111/nph.14430 pmid: 28134441
[13] Lee S, Mian M A R, Sneller C H, Wang H, Dorrance A E, McHale L K. Joint linkage QTL analyses for partial resistance to Phytophthora sojae in soybean using six nested inbred populations with heterogeneous conditions. Theor Appl Genet, 2014,127:429-444.
pmid: 24247235
[14] 冯艳萍. 河南省大豆生产概况及发展建议. 河南农业, 2018, (10):49-50.
Feng Y P. Overview of soybean production in Henan province and development suggestions. J Henan Agric, 2018, (10):49-50 (in Chinese).
[15] Lohnes D G, Nickell C D, Schmitthenner A F. Origin of soybean alleles for Phytophthora resistance in China. Crop Sci, 1996,36:1689-1692.
[16] 王晓鸣, 朱振东, 王化波, 武小菲. 中国大豆疫霉根腐病和大豆种质抗病性研究. 植物病理学报, 2001,31:324-329.
Wang X M, Zhu Z D, Wang H B, Wu X F. Occurrence of soybean Phytophthora root rot and evaluation of germplasm resistance in China. Acta Phytopathol Sin, 2001,31:324-329 (in Chinese with English abstract).
[17] 朱振东, 霍云龙, 王晓鸣, 黄俊斌, 武小菲. 大豆疫霉根腐病抗源筛选. 植物遗传资源学报, 2006,7:24-30.
Zhu Z D, Huo Y L, Wang X M, Huang J B, Wu X F. Screening for resistance sources to Phytophthora root rot in soybean. J Plant Genet Resour, 2006,7:24-30 (in Chinese with English abstract).
[18] Zhang J, Xia C, Wang X, Duan C, Sun S, Wu X, Zhu Z. Genetic characterization and fine mapping of the novel Phytophthora resistance gene in a Chinese soybean cultivar. Theor Appl Genet, 2013,126:1555-1561.
doi: 10.1007/s00122-013-2073-1 pmid: 23467992
[19] 张海鹏, 郭娜, 牛景萍, 黄婧, 彭洋, 王海棠, 赵晋铭, 邢邯. 大豆品种郑97196对疫霉根腐病的抗性遗传分析及基因定位. 大豆科学, 2016,35:373-379.
Zhang H P, Guo N, Niu J P, Huang J, Peng Y, Wang H T, Zhao J M, Xing H. Genetic analysis of resistance to Phytophthora sojae and mapping of resistance gene in soybean cultivar Zheng 97196. Soybean Sci, 2016,35:373-379 (in Chinese with English abstract).
[20] Zhang J, Sun S, Wang G, Duan C, Wang X, Wu X, Zhu Z. Characterization of Phytophthora resistance in soybean cultivars/lines bred in Henan province. Euphytica, 2014,196:375-384.
[21] 张雪翠, 钟超, 段灿星, 孙素丽, 朱振东. 大豆品种郑97196中抗疫病基因RpsZheng精细定位. 作物学报, 2020,46:997-1005.
Zhang X C, Zhong C, Duan C X, Sun S L, Zhu Z D. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196. Acta Agron Sin, 2020,46:997-1005 (in Chinese with English abstract).
[22] 叶晨晨. 河南省大豆疫霉的分离及鉴定. 安徽农业大学硕士学位论文, 安徽合肥, 2011.
Ye C C. Isolation and Identification of Phytophthora sojae from Henan Province MS Thesis of Anhui Agricultural University, Hefei, Anhui, China, 2011 (in Chinese with English abstract).
[23] Dorrance A E, Berry S A, Anderson T R, Meharg C. Isolation, storage, pathotype characterization, and evaluation of resistance for Phytophthora sojae in soybean. Plant Health Prog, 2008. doi: 10.1094/PHP-2008-0118-01-DG.
pmid: 10275108
[24] Li Y, Sun S, Zhong C, Wang X, Wu X, Zhu Z. Genetic mapping and development of co-segregating markers of RpsQ, which provides resistance to Phytophthora sojae in soybean. Theor Appl Genet, 2017,130:1223-1233.
doi: 10.1007/s00122-017-2883-7 pmid: 28258371
[25] Zhang J, Xia C, Duan C, Sun S, Wang X, Wu X, Zhu Z. Identification and candidate gene analysis of a novel Phytophthora resistance gene Rps10 in a Chinese soybean cultivar. PLoS One, 2013,8:e69799.
doi: 10.1371/journal.pone.0069799 pmid: 23936102
[26] 钟超, 李银萍, 孙素丽, 刘章雄, 邱丽娟, 朱振东. 野生大豆资源对大豆疫病抗病性和耐病性鉴定. 植物遗传资源学报, 2015,16:684-690.
Zhong C, Li Y P, Sun S L, Liu Z X, Qiu L J, Zhu Z D. Identification of resistance and tolerance to Phytophthora sojae in wild soybean germplasm. J Plant Genet Resour, 2015,16:684-690 (in Chinese with English abstract).
[27] Kyle D E, Nickell C D, Nelson R L, Pedersen W L. Response of soybean accessions from provinces in southern China to Phytophthora sojae. Plant Dis, 2007,82:555-559.
pmid: 30856987
[28] 李海朝, 马莹, 张辉, 文自翔, 李金英, 武永康, 卢为国. 优异大豆组合郑州135×泗豆2号的育种贡献. 植物遗传资源学报, 2012,13:1101-1107.
Li H C, Ma Y, Zhang H, Wen Z X, Li J Y, Wu Y K, Lu W G. Contribution of elite combination Zhengzhou 135 × Sidou 2 in soybean breeding. J Plant Genet Resour, 2012,13:1101-1107 (in Chinese with English abstract).
[29] 赵开兵, 沈维良, 王路路, 姜磊. 大豆新品种皖宿2156的选育及栽培技术要点. 大豆科技, 2013, (6):48-49.
Zhao K B, Shen W L, Wang L L, Jiang L. Breeding and cultivation techniques of new soybean cultivar Wansu 2156. Soybean Sci Technol, 2013, (6):48-49 (in Chinese).
[30] 李金花, 耿臻, 杨青春, 舒文涛, 李琼. 大豆新品种周豆23号. 中国种业, 2016, (11):52.
Li J H, Geng Z, Yang Q C, Shu W T, Li Q. New soybean cultivar Zhoudou 23. China Seed Ind, 2016, (11):52 (in Chinese).
[31] 张志民, 徐淑霞, 周青, 郑丽敏, 杨慧风, 王凤菊, 陈亚光. 大豆新品种安豆5156的综合性状分析. 中国种业, 2017, (11):66-67.
Zhang Z M, Xu S X, Zhou Q, Zheng L M, Yang H F, Wang F J, Chen Y G. Comprehensive character analysis of a new soybean cultivar Andou 5156. China Seed Ind, 2017, (11):66-67 (in Chinese).
[32] 陈晓玲, 朱振东, 杜青, 王晓鸣, 肖炎农, 武小菲. 大豆品种(系)抗疫霉根腐病基因的连锁SSR标记分析. 植物病理学报, 2008,38:75-82.
Chen X L, Zhu Z D, Du Q, Wang X M, Xiao Y N, Wu X F. Analysis of Phytophthora resistance loci Rps1 and Rps4 in soybean cultivars or lines using linkage SSR markers. Acta Phytopathol Sin, 2008,38:75-82 (in Chinese with English abstract).
[33] 张志民, 陈亚光, 周青, 杨慧风, 王凤菊, 郑丽敏, 郭海芳, 李明军, 徐淑霞. 安豆1498——疫霉根腐病抗性新种质. 中国油料作物学报, 2017,39:855-860.
Zhang Z M, Chen Y G, Zhou Q, Yang H F, Wang F J, Zheng L M, Guo H F, Li M J, Xu S X. Resistance identification of a new soybean germplasm Andou 1498 to Phytophthora root rot. Chin J Oil Crop Sci, 2017,39:855-860 (in Chinese with English abstract).
[34] Slaminko T L, Bowen C R, Hartman G L. Multi-year evaluation of commercial soybean cultivars for resistance to Phytophthora sojae. Plant Dis, 2010,94:368-371.
pmid: 30754241
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[3] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[4] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[5] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[6] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[7] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[8] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[9] YANG Xin, LIN Wen-Zhong, CHEN Si-Yuan, DU Zhen-Guo, LIN Jie, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Li-Wu. Molecular identification of a geminivirus CoYVV and screening of resistant germplasms in jute [J]. Acta Agronomica Sinica, 2022, 48(3): 624-634.
[10] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[11] DONG Yan-Kun, HUANG Ding-Quan, GAO Zhen, CHEN Xu. Identification, expression profile of soybean PIN-Like (PILS) gene family and its function in symbiotic nitrogen fixation in root nodules [J]. Acta Agronomica Sinica, 2022, 48(2): 353-366.
[12] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
[13] WANG Yin, FENG Zhi-Wei, GE Chuan, ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, YAN Su-Xian, ZHENG Jun, ZHENG Xing-Wei. Identification of seedling resistance to stripe rust in wheat-Thinopyrum intermedium translocation line and its potential application in breeding [J]. Acta Agronomica Sinica, 2021, 47(8): 1511-1521.
[14] FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539.
[15] XI Ling, WANG Yu-Qi, ZHU Wei, WANG Yi, CHEN Guo-Yue, PU Zong-Jun, ZHOU Yong-Hong, KANG Hou-Yang. Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province [J]. Acta Agronomica Sinica, 2021, 47(7): 1309-1323.
Full text



No Suggested Reading articles found!