Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (7): 1709-1720.doi: 10.3724/SP.J.1006.2022.13042

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Research on the grain production pattern and heat resource utilization efficiency based on temperature zone division in China

WANG Kai-Cheng(), ZHAO Jiong-Chao, HAN Tong, SHI Xiao-Yu, GAO Zhen-Zhen, BO Xiao-Zhi, CHEN Fu, CHU Qing-Quan()   

  1. Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs / College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2021-06-02 Accepted:2021-09-09 Online:2022-07-12 Published:2021-10-19
  • Contact: CHU Qing-Quan E-mail:s20203010006@cau.edu.cn;cauchu@cau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31871581);National College Students Innovation and Entrepreneurship Training Program(202110019004)

Abstract:

It is of great significance to reveal the changes of grain production pattern and natural resource utilization efficiency for rational utilization of natural resources, security of national food security, and sustainable development. Base on the data of county-scale grain production and 683 meteorological stations from 1985 to 2015 in China, ArcGIS spatial analysis method was adopted to analyze the grain production pattern changes and heat resource utilization characteristics considered temperature zone division. Studies had shown that about 90% of Chinese total grain output was produced in mid temperate, warm temperate, northern subtropical, and mid subtropical zones from 1985 to 2015, accounting for 18.6%, 25.6%, 21.6%, and 25.9%, respectively. In the past 30 years, the proportion of grain production in the single cropping region had increased by 13.8%, while it had decreased by 2.7% and 11.2% in the double and triple cropping region, respectively. The proportion of grain production had increased by 13.9% in the mid temperate zone of the single cropping region which was drove by the advance of planted acreage and yield, while the proportion decreased by 13.9% in the subtropical zones of the triple-cropping system. Over the past 30 years, the annual accumulated temperature above 10℃ had continued to increase in different temperature zones, and that was more evident in southern region than northern region. However, the increased magnitude of heat utilization efficiency for grain production in southern temperature zones was lower than northern region. There was a “dislocation phenomenon” between the changes of Chinese grain production pattern and the distributions of heat resources. Therefore, it was necessary to consider the coordination of grain production and natural resources matching as well as the characteristics of resource utilization for improving resource utilization efficiency when optimizing the layout of regional grain production and formulating strategies in China.

Key words: grain production, spatial pattern, divisions of temperature zones, multiple cropping system, heat resource utilization efficiency

Fig. 1

Distribution of meteorological stations and DEM data of elevation map in the study This map is based on the standard map downloaded from the standard map service website of the National Bureau of Surveying, Mapping and Geographic Information with the approval number GS (2019) 1822. The map is not modified."

Fig. 2

Temperature zone division map in China"

Table 1

Accumulated temperature index and land use status in different temperature zones"

熟区
Multiple cropping system
温度带
Temperature zone
≥10℃年积温
Annual accumulated
temperature above 10℃ (℃ d)
国土面积比重
Proportion of
land area (%)
耕地面积比重
Proportion of cropland (%)
一年一熟
Single-cropping system
寒温带Cold temperate zone 1154 0.8 0.2
中温带Middle temperate zone 2496 29.3 36.9
高原亚寒带Plateau sub-frigid zone 28 13.0 0.2
高原温带Plateau temperate zone 578 13.7 0.9
一年两熟
Double-cropping system
暖温带Warm temperate zone 3917 16.4 23.9
北亚热带North subtropical zone 4473 6.8 14.0
高原亚热带Plateau subtropical zone 3721 0.7 0.003
一年三熟
Triple-cropping system
中亚热带Middle subtropical zone 5017 12.4 16.6
南亚热带South subtropical zone 6489 6.1 6.5
热带Tropical zone 7574 0.9 1.0

Fig. 3

Grain planting area and production in different temperature zones in China from 1985 to 2015 I, II, III, IV, V, VI, VII, HI, HII, and HIII represents cold temperate zone, middle temperate zone, warm temperate zone, north subtropical zone, middle subtropical zone, south subtropical zone, tropical zone, plateau sub-frigid zone, plateau temperate zone, and plateau subtropical zone, respectively."

Fig. 4

Grain planting area and production concentration in different temperature zones and multiple cropping regions in China from 1985 to 2015 SC, DC, and TC represents single-cropping system, double-cropping system, and triple-cropping system, respectively. Abbreviations of temperature zones are the same as those given in Fig. 3."

Fig. 5

Distributions of dominant types of contributions of grain production in different temperature zones in China from 1985 to 2015 Y, A, Y+A, and YA represent yield dominant, area dominant, yield and area dominant, and interaction dominant, respectively. "

Fig. 6

Average annual accumulated temperature above 10℃ and climate tendency rate of different temperature zones in China from 1985 to 2015"

Fig. 7

Heat utilization efficiency in different temperature zones and multiple cropping regions in China from 1985 to 2015 Abbreviations of temperature zones and multiple cropping regions are the same as those given in Fig. 4."

[1] 郑亚楠, 张凤荣, 谢臻, 张天柱, 李超, 王秀丽. 中国粮食生产时空演变规律与耕地可持续利用研究. 世界地理研究, 2019, 28(6): 120-131.
Zheng Y N, Zhang F R, Xie Z, Zhang T Z, Li C, Wang X L. Research on the spatial-temporal evolution of grain production and sustainable use of cultivated land in China. World Reg Stud, 2019, 28(6): 120-131. (in Chinese with English abstract)
[2] 武维华. “北粮南运”不利于可持续发展. 中国经贸导刊, 2015, (25): 66.
Wu W H. “North grain transport to the south” was not conducive to sustainable development. Chin Econ Trade Her, 2015, (25): 66. (in Chinese with English abstract)
[3] Dong J W, Liu J Y, Tao F L, Xu X L, Wang J B. Spatio-temporal changes in annual accumulated temperature in China and the effects on cropping systems, 1980s to 2000. Clim Res, 2009, 40(1): 37-48.
doi: 10.3354/cr00823
[4] 傅伯杰. 地理学综合研究的途径与方法: 格局与过程耦合. 地理学报, 2014, 69: 1052-1059.
doi: 10.11821/dlxb201408002
Fu B J. The integrated studies of geography: coupling of patterns and processes. Acta Geogr Sin, 2014, 69: 1052-1059. (in Chinese with English abstract)
[5] 白冰, 杨雨豪, 王小慧, 贾浩, 吴尧, 史磊刚, 尹小刚, 陈阜. 基于农作制分区的1985-2015年中国小麦生产时空变化. 作物学报, 2019, 45: 1554-1564.
Bai B, Yang Y H, Wang X H, Jia H, Wu Y, Shi L G, Yin X G, Chen F. Spatio-temporal changes of China’s wheat production based on division of farming system during 1985-2015. Acta Agron Sin, 2019, 45: 1554-1564 (in Chinese with English abstract) .
[6] 于元赫, 吴健, 李子君, 胡蕾. 山东省粮食生产时空格局演变及安全评价. 中国农业大学学报, 2020, 25(9): 176-186.
Yu Y H, Wu J, Li Z J, Hu L. Spatial-temporal patterns variation of grain production and security evaluation in Shandong province. J China Agric Univ, 2020, 25(9): 176-186. (in Chinese with English abstract)
[7] 王小慧, 姜雨林, 刘洋, 卢捷, 尹小刚, 史磊刚, 黄晶, 褚庆全, 陈阜. 基于县域单元的我国水稻生产时空动态变化. 作物学报, 2018, 44: 1704-1712.
Wang X H, Jiang Y L, Liu Y, Lu J, Yin X G, Shi L G, Huang J, Chu Q Q, Chen F. Spatio-temporal changes of rice production in China based on county unit. Acta Agron Sin, 2018, 44: 1704-1712. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01704
[8] Zhao J, Yang X G.Average amount and stability of available agro-climate resources in the main maize cropping regions in China during1981-2010. J Meteorol Res, 2018, 32: 146-156.
doi: 10.1007/s13351-018-7122-x
[9] 崔读昌. 中国粮食作物气候资源利用效率及其提高的途径. 中国农业气象, 2001, 22(2): 26-33.
Cui D C. Climatic resources utilization coefficiency of cereal crops in China and development measures. Chin J Agrometeorol, 2001, 22(2): 26-33. (in Chinese with English abstract)
[10] 廖成泉, 胡银根, 章晓曼. 基于四阶段DEA-Tobit的湖北省耕地资源利用效率及其影响因素研究. 农业现代化研究, 2015, 36: 876-882.
Liao C Q, Hu Y G, Zhang X M. Research on the efficiency and the influencing factors of arable land utilization in Hubei province based on the four-stage DEA and Tobit model. Res Agric Modern, 2015, 36: 876-882. (in Chinese with English abstract)
[11] 赵放, 王锐, 赵慧颖, 李秀芬, 林伟楠, 田宝星. 寒地玉米生产热量利用效率潜力演变特征. 玉米科学, 2019, 27(3): 73-81.
Zhao F, Wang R, Zhao Y H, Li X F, Lin W N, Tian B X. Evolution characteristics of potential heat utilization efficiency in maize production in cold region. J Maize Sci, 2019, 27(3): 73-81. (in Chinese with English abstract)
[12] 户艳领, 陈志国, 刘振国. 基于熵值法的河北省农业用水利用效率研究. 中国农业资源与区划, 2015, 36(3): 136-142.
Hu Y L, Chen Z G, Liu Z G. Study of the utilization efficiency of water resources in Hebei province based on the entropy method. Chin J Agric Res Reg Plan, 2015, 36(3): 136-142. (in Chinese with English abstract)
[13] 刘玉杰, 杨艳昭, 封志明. 中国粮食生产的区域格局变化及其可能影响. 资源科学, 2007, 29(2): 8-14.
Liu Y J, Yang Y Z, Feng Z M. The change of the main regions for China’s foodgrain production and its implications. Res Sci, 2007, 29(2): 8-14. (in Chinese with English abstract)
[14] 洪舒蔓, 郝晋珉, 周宁, 陈丽, 吕振宇. 黄淮海平原耕地变化及对粮食生产格局变化的影响. 农业工程学报, 2014, 30(21): 268-277.
Hong S M, Hao J M, Zhou N, Chen L, Lyu Z Y. Change of cultivated land and its impact on grain production pattern in Huang-Huai-Hai Plain. Trans CSAE, 2014, 30(21): 268-277. (in Chinese with English abstract)
[15] 王凯澄, 韩桐, 臧华栋, 陈阜, 薄晓智, 褚庆全. 基于地貌分区的近30年中国粮食生产空间分异研究. 作物学报, 12: 2501-2510.
Wang K C, Han T, Zang H D, Chen F, Bo X Z, Chu Q Q. Spatial distribution of Chinese grain production in the past 30 years based on geomorphological division. Acta Agron Sin, 12: 2501-2510. (in Chinese with English abstract)
[16] 郑景云, 卞娟娟, 葛全胜, 郝志新, 尹云鹤, 廖要明. 1981-2010年中国气候区划. 科学通报, 2013, 58: 3088-3099.
Zheng J Y, Bian J J, Ge Q S, Hao Z X, Yin Y H, Liao Y M.The climate regionalization in China for 1981-2010. Chin Sci Bull, 2013, 58: 3088-3099. (in Chinese with English abstract)
[17] 韩湘玲, 刘巽浩, 高亮之, 李林. 中国农作物种植制度气候区划. 耕作与栽培, 1986, (增刊1): 2-19.
Han X L, Liu X H, Gao L Z, Li L. Climatic regionalization of crop planting system in China. Cult Plant, 1986, (S1): 2-19. (in Chinese with English abstract)
[18] 胡文海. 中部地区粮食生产比较优势分析与基地建设. 地理科学, 2015, 35: 293-298.
doi: 10.13249/j.cnki.sgs.2015.03.293
Hu W H. Comparative advantage of grain production in central China and the base construction. Sci Geogr Sin, 2015, 35: 293-298. (in Chinese with English abstract)
[19] 沈瑱, 曾燕, 肖卉, 费松. 江苏省日照时数的气候特征分析. 气象科学, 2007, 27: 425-429.
Shen Z, Zeng Y, Xiao H, Fei S. Changes of sunshine hours in the recent 40 years over Jiangsu province. J Meteorol Sci, 2007, 27: 425-429. (in Chinese with English abstract)
[20] 徐海亚, 朱会义. 基于自然地理分区的1990-2010年中国粮食生产格局变化. 地理学报, 2015, 70: 582-590.
doi: 10.11821/dlxb201504006
Xu H Y, Zhu H Y.Spatial change of China’s grain production based on geographical division of natural factors during1990-2010. Acta Geogr Sin, 2015, 70: 582-590. (in Chinese with English abstract)
[21] 戴声佩, 李海亮, 罗红霞, 赵一飞. 1960-2011年华南地区界限温度10℃积温时空变化分析. 地理学报, 2014, 69: 650-660.
doi: 10.11821/dlxb201405008
Dai S P, Li H L, Luo H X, Zhao Y F. The spatial-temporal change of active accumulated temperature ≥10℃ in Southern China from 1960 to 2011. Acta Geogr Sin, 2014, 69: 650-660. (in Chinese with English abstract)
[22] Hutchinson M F. The application of thin plate splines to continent-wide data assimilation. In:Jasper J D, ed.ed Data Assimilation Systems. Melbourne:Bureau of Meteorology, 1991. pp 104-113.
[23] 赵美艳, 余君, 胡芸芸. 基于局部薄盘光滑样条函数的重庆地区气温空间插值. 陕西气象, 2021, (1): 50-55.
Zhao M Y, Yu J, Hu Y Y. Spatial interpolation of temperature in Chongqing based on local thin plate smoothing spline function. J Shaanxi Meteorol, 2021, (1): 50-55 (in Chinese with Chinese abstract).
[24] Hijmans R J, Cameron S E, Parra J L, Jones P G, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol, 2005, 25: 1965-1978.
doi: 10.1002/joc.1276
[25] 钱永兰, 吕厚荃, 张艳红. 基于ANUSPLIN软件的逐日气象要素插值方法应用与评估. 气象与环境学报, 2010, 26(2): 7-15.
Qian Y L, Lyu H Q, Zhang Y H. Application and assessment of spatial interpolation method on daily meteorological elements based on ANUSPLIN software. J Meteorol Environ, 2010, 26(2): 7-15. (in Chinese with English abstract)
[26] 刘巽浩, 陈阜, 吴尧. 多熟种植--中国农业的中流砥柱. 作物杂志, 2015, (6): 1-9.
Liu X H, Chen F, Wu Y. Multiple cropping: the principal part of China’s agriculture. Crops, 2015, (6): 1-9. (in Chinese with English abstract)
[27] 郑有贵, 邝婵娟, 焦红坡. 南粮北调向北粮南运演变成因的探讨--兼南北方两个区域粮食生产发展优势和消费比较. 中国经济史研究, 1999, (1): 99-106.
Zheng Y G, Kuang C J, Jiao H P. Discussion on the causes of the evolution of the South-to-North grain diversion to the North-to- South grain transport-Concurrently, the advantages of the development and consumption of grain production in the two regions. Res Chin Econ Hist, 1999, (1): 99-106. (in Chinese with English abstract)
[28] 黄国勤. 论提高我国南方耕地复种指数. 自然资源, 1995, (1): 30-37.
Huang G Q. On the increase of multiple cropping index of cultivated land in Southern China. Res Sci, 1995, (1): 30-37. (in Chinese with English abstract)
[29] 刘纪远, 匡文慧, 张增祥, 徐新良, 秦元伟, 宁佳, 周万村, 张树文, 李仁东, 颜长珍, 吴世新, 史学正, 江南, 于东升, 潘贤章, 迟文峰. 20世纪80年代末以来中国土地利用变化的基本特征与空间格局. 地理学报, 2014, 69: 3-14.
doi: 10.11821/dlxb201401001
Liu J Y, Kuang W H, Zhang Z X, Xu X L, Qin Y W, Ning J, Zhou W S, Zhang S W, Li R D, Yan C Z, Wu S X, Shi X Z, Jiang N, Yu D S, Pan X Z, Chi W F. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. Acta Geogr Sin, 2014, 69: 3-14. (in Chinese with English abstract)
[30] 辛良杰, 李秀彬. 近年来我国南方双季稻区复种的变化及其政策启示. 自然资源学报, 2009, 24: 58-65.
Xin L J, Li X B. Changes of multiple cropping in double cropping rice area of southern China and its policy implications. J Nat Res, 2009, 24: 58-65. (in Chinese with English abstract)
[31] 张志高, 范留飞, 马晓慧, 蔺敬妍, 朱昊冉, 邱双娟. 2007-2015年新疆粮食增产格局及贡献因素研究. 干旱区资源与环境, 2018, 32(9): 71-75.
Zhang Z G, Fan L F, Ma X H, Lin J Y, Zhu H R, Qiu S J. Spatial-temporal patterns of Xinjiang’s grain output increase and the contribution factors during2007-2015. J Arid Land Res Environ, 2018, 32(9): 71-75. (in Chinese with English abstract)
[32] 张正斌, 陈兆波, 孙传范, 徐萍. 气候变化与东北地区粮食新增. 中国生态农业学报, 2011, 19: 193-196.
Zhang Z B, Chen Z B, Sun C F, Xu P. Grain increase in Northeast China under climatic change. Chin J Eco-Agric, 2011, 19: 193-196. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2011.00193
[33] 孙双双. 内蒙古: 保持粮食总产量稳定不变推进现代畜牧业做精做优. 中国食品工业, 2021, (增刊1): 17.
Sun S S. Inner Mongolia: keep the total grain output stable and promote the modern animal husbandry to be refined and optimized. China Food Ind, 2021, (S1): 17 (in Chinese with Chinese abstract).
[34] 史海滨, 杨树青, 李瑞平, 李仙岳, 李为萍, 闫建文, 苗庆丰, 李祯. 内蒙古河套灌区节水灌溉与水肥高效利用研究展望. 灌溉排水学报, 2020, 39(11): 1-12.
Shi H B, Yang S Q, Li R P, Li X Y, Li W P, Yan J W, Miao Q F, Li Z. Water-saving irrigation and utilization efficiency of water and fertilizer in Hetao Irrigation District of Inner Mongolia: prospect for future research. J Irrig Drain, 2020, 39(11): 1-12. (in Chinese with English abstract)
[35] 徐文明, 朱显平. “一带一路”倡议下东北地区粮食产业转型升级路径. 地理科学, 2020, 40: 2046-2054.
doi: 10.13249/j.cnki.sgs.2020.12.011
Xu W M, Zhu X P. The path of transformation and updating of food industrial in northeast region in the perspective of the belt and road initiative. Sci Geogr Sin, 2020, 40: 2046-2054. (in Chinese with English abstract)
[36] 何秀丽, 刘文新. 中国东北粮食安全评价及政策模拟. 农业现代化研究, 2012, 33: 678-681.
He X L, Liu W X. The assessment and policy simulation of grain security of Northeast China. Res Agric Modern, 2012, 33: 678-681. (in Chinese with English abstract)
[37] 张雪靓, 孔祥斌. 黄淮海平原地下水危机下的耕地资源可持续利用. 中国土地科学, 2014, 28(5): 90-96.
Zhang X J, Kong X B. Cropland sustainable use impacted by groundwater depletion in China’s HHH Plains. Chin Land Sci, 2014, 28(5): 90-96. (in Chinese with English abstract)
[38] 韩晓增, 王守宇, 宋春雨, 乔云发. 土地利用/覆盖变化对黑土生态环境的影响. 地理科学, 2005, 25: 203-208.
Han X Z, Wang S Y, Song C Y, Qiao Y F. Effect of land use and cover change on ecological environment in black soil region. Sci Geogr Sin, 2005, 25: 203-208. (in Chinese with English abstract)
[39] 李帅, 张勃, 马彬, 侯启, 何航. 基于格点数据的中国1961-2016年≥5℃、≥10℃有效积温时空演变. 自然资源学报, 2020, 35: 1216-1227.
Li S, Zhang B, Ma B, Hou Q, He H. Spatiotemporal evolution of effective accumulated temperatures of ≥5℃ and ≥10℃ based on grid data in China from 1961 to 2016. J Nat Res, 2020, 35: 1216-1227. (in Chinese with English abstract)
[40] 胡琦, 潘学标, 邵长秀, 张丹, 王潇潇, 韦潇宇. 1961-2010年中国农业热量资源分布和变化特征. 中国农业气象, 2014, 35: 119-127.
Hu Q, Pan X B, Shao C X, Zhang D, Wang X X, Wei X Y.Distribution and variation of China agricultural heat resources in1961-2010. Chin J Agrometeorol, 2014, 35: 119-127. (in Chinese with English abstract)
[41] Liu X Q, Liu Y S, Liu Z J, Chen Z F. Impacts of climatic warming on cropping system borders of China and potential adaptation strategies for regional agriculture development. Sci Total Environ, 2021, 755: 142415.
doi: 10.1016/j.scitotenv.2020.142415
[42] 王勇, 张镇涛, 张方亮, 郭世博, 杨晓光. 气候变化背景下玉米品种更替对新疆光热资源利用效率的影响. 中国农业气象, 2020, 41: 331-344.
Wang Y, Zhang Z T, Zhang F L, Guo S B, Yang X G. Impact of climate change and varieties replacement on maize yield and resource use efficiency in Xinjiang. Chin J Agrometeorol, 2020, 41: 331-344. (in Chinese with English abstract)
[43] 黄灿, 江丽, 陈鑫, 汪芳甜, 安萍莉. 地膜覆盖和育苗移栽技术对农作物产量和水热资源利用的影响. 中国农业大学学报, 2018, 23(12): 1-12.
Huang C, Jiang L, Chen X, Wang F T, An P L. Research on the effects of plastic film mulching and seeding transplanting on crop yield and water and heat resource utilization. J China Agric Univ, 2018, 23(12):1-12. (in Chinese with English abstract)
[44] Jiang Y L, Yin X G, Wang X H, Zhang L, Lu Z, Lei Y D, Chu Q Q, Chen F. Impacts of global warming on the cropping systems of China under technical improvements from 1961 to 2016. Agron J, 2021, 113: 187-199.
doi: 10.1002/agj2.20497
[45] Qiu B W, Yang X, Tang Z H, Chen C C, Li H W, Berry J. Urban expansion or poor productivity: explaining regional differences in cropland abandonment in China during the early 21st century. Land Degrad Dev, 2020, 31: 2540-2551.
doi: 10.1002/ldr.3617
[1] WANG Kai-Cheng, HAN Tong, ZANG Hua-Dong, CHEN Fu, BO Xiao-Zhi, CHU Qing-Quan. Spatial distribution of Chinese grain production in the past 30 years based on geomorphological division [J]. Acta Agronomica Sinica, 2021, 47(12): 2501-2510.
[2] YANG Feng,LOU Ying,LIAO Dun-Ping,GAO Ren-Cai,YONG Tai-Wen,WANG Xiao-Chun,LIU Wei-Guo,YANG Wen-Yu. Effects of Row Spacing on Crop Biomass, Root Morphology and Yield in Maize-Soybean Relay Strip Intercropping System [J]. Acta Agron Sin, 2015, 41(04): 642-650.
[3] ZUO Jing-Song, GE Yun-Long, LIU Rong, YAN Cui-Yan, TANG Yao, YANG Guang, LENG Suo-Hu. Nitrogen Accumulation and Distribution in Rapeseed (Brassica napus. L) with Different Nitrogen Utilization Efficiencies for Grain Production [J]. Acta Agron Sin, 2011, 37(10): 1852-1859.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[9] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[10] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .