Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (12): 2501-2510.doi: 10.3724/SP.J.1006.2021.03068


Spatial distribution of Chinese grain production in the past 30 years based on geomorphological division

WANG Kai-Cheng(), HAN Tong, ZANG Hua-Dong, CHEN Fu, BO Xiao-Zhi, CHU Qing-Quan*()   

  1. Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs / College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2020-11-14 Accepted:2021-04-26 Online:2021-12-12 Published:2021-06-04
  • Contact: CHU Qing-Quan E-mail:s20203010006@cau.edu.cn;cauchu@cau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300201)


Revealing the temporal and spatial distribution characteristics of grain production in China and its matching with arable land and agricultural resources was of great significance to rationally utilize land and improve the comprehensive land production capacity of land, and guarantee the national food security and ecological security. In this study, we quantitatively analyzed the temporal and spatial distribution characteristics of Chinese grain production based on geomorphological division using the grain production data of county regions via ArcGIS spatial analysis method from 1985 to 2015 in China. The results were as follows: (1) From 1985 to 2015, the plain areas produced an average of 42.7% of the country’s grain with 22.9% of the country’s land area. It was followed by mountains, terraces, and hills, accounting for 25.5%, 17.2%, and 14.7% of the country’s grain on average, respectively. In addition, grain production tended to be concentrated in plain and platform areas. In the past 30 years, the grain production concentration in plain areas had increased by 3.8%, while that in mountainous areas had decreased by 4.4%. (2) In the four geomorphological divisions, the average production of rice, wheat, maize, and soybean in the plain area accounted for 30.6%, 63.3%, 46.9%, and 40.7% in recent 30 years, while potato production in the mountainous areas reached 54.1%. The production of rice, wheat, and maize all showed a tendency to concentrate in the plain areas, while the concentration of soybean and potato in the hills and mountain was increased. (3) In the past 30 years, the magnitude of the change for grain production among different geomorphological divisions was greater than that of planting area, and the variation of grain production in difference geomorphological divisions increased. In conclusion, in the future optimization of regional crop layout and the formulation of regional grain production technology strategy, not only the change of climate resources and social and economic conditions should be considered, but also the change of terrain and landform and their different requirements for agricultural machinery, soil tillage, and other technologies should be taken into account.

Key words: grain production, spatial distribution, geomorphological division, concentration, China

Fig. 1

Geomorphological divisions of China The geomorphological map of China comes from the resource and environment data cloud platform of the Resource and Environmental Science Data Center of the Chinese Academy of Sciences (http://www.resdc.cn/)."

Fig. 2

Grain planting area and yield with different geomorphological division in China from 1985 to 2015 Ap, At, Ah, and Am represents the grain planting area of plain, terrace, hill, and mountain, respectively; Pp, Pt, Ph, and Pm represents the grain production of plain, terrace, hill, and mountain, respectively."

Table 1

Grain planting area and yield concentration of different geomorphological division from 1985 to 2015 in China"

Geomorphic types
Proportion of land area
Grain planting area and production concentration in different years (%)
1985 1990 1995 2000 2005 2010 2015 1985-2015
22.9 AC 39.8 39.4 38.7 38.1 37.8 40.2 40.2 +0.4
PC 41.3 41.5 42.8 42.0 41.8 44.5 45.1 +3.8
13.1 AC 16.7 16.7 16.3 16.4 16.8 17.5 18.0 +1.3
PC 16.8 17.6 17.0 16.3 17.2 17.6 17.7 +0.9
21.0 AC 14.9 15.0 15.0 15.4 15.7 15.5 15.5 +0.6
PC 14.7 14.8 14.3 14.4 15.3 14.6 14.4 -0.3
43.0 AC 28.6 29.0 30.0 30.1 29.8 26.9 26.3 -2.3
PC 27.1 26.2 26.0 27.3 25.7 23.4 22.8 -4.3

Fig. 3

Planting area and yield of main grain crops with different geomorphological division from 1985 to 2015 in China Ar, Aw, Am, As, and Ap represents the planting area of rice, wheat, maize, soybean, and potato, respectively; Pr, Pw, Pm, Ps, and Pp represents the production of rice, wheat, maize, soybean, and potato, respectively."

Fig. 4

Planting area and yield concentration of main grain crops with different geomorphological division in China from 1985 to 2015"

Fig. 5

Fluctuation variation of grain planting area and yield from 1985 to 2015"

[1] 殷培红, 方修琦, 马玉玲, 田青. 21世纪初我国粮食供需的新空间格局. 自然资源学报, 2006, 21:625-631.
Yin P H, Fang X Q, Ma Y L, Tian Q. New regional pattern of grain supply demand in China in the early 21st century. J Nat Res, 2006, 21:625-631 (in Chinese with English abstract).
[2] 徐海亚, 朱会义. 基于自然地理分区的1990-2010年中国粮食生产格局变化. 地理学报, 2015, 70(4):72-80.
Xu H Y, Zhu H Y. Spatial change of China’s grain production based on geographical division of natural factors during 1990-2010. J Geogr Sci, 2015, 70(4):72-80 (in Chinese with English abstract).
[3] 程叶青, 张平宇. 中国粮食生产的区域格局变化及东北商品粮基地的响应. 地理科学, 2005, 25:513-520.
Cheng Y Q, Zhang P Y. Regional patterns changes of Chinese grain production and response of commodity grain base in Northeast China. Sci Geogr Sin, 2005, 25:513-520 (in Chinese with English abstract).
[4] 李晓, 谢永生, 李文卓, 张应龙. 黄淮海冲积平原区粮食生产生态成本探究. 中国农业科学, 2011, 44:2294-2302.
Li X, Xie Y S, Li W Z, Zhang Y L. Exploration of the ecological costs of food production in the alluvial region of the Huang-Huai-Hai plain. Sci Agric Sin, 2011, 44:2294-2302 (in Chinese with English abstract).
[5] 程琨, 潘根兴, 邹建文, 李恋卿, 熊正琴, 张旭辉, 郑金伟. 1949-2006年间中国粮食生产的气候变化影响风险评价. 南京农业大学学报, 2011, 34(3):83-88.
Cheng K, Pan G X, Zou J W, Li L Q, Xiong Z Q, Zhang X H, Zheng J W. Risk assessment of China’s cereals production against climate change over 1949-2006. J Nanjing Agric Univ, 2011, 34(3):83-88 (in Chinese with English abstract).
[6] 赵明, 周宝元, 马玮, 李从锋, 丁在松, 孙雪芳. 粮食作物生产系统定量调控理论与技术模式. 作物学报, 2019, 45:485-498.
Zhao M, Zhou B Y, Ma W, Li C F, Ding Z S, Sun X F. Theoretical and technical models of quantitative regulation in food crop production system. Acta Agron Sin, 2019, 45:485-498 (in Chinese with English abstract).
[7] 傅伯杰. 地理学综合研究的途径与方法: 格局与过程耦合. 地理学报, 2014, 69:1052-1059.
doi: 10.11821/dlxb201408002
Fu B J. The integrated studies of geography: coupling of patterns and processes. Acta Geogr Sin, 2014, 69:1052-1059 (in Chinese with English abstract).
[8] 杨春霞, 郑华, 欧阳志云. 2000-2015年三江平原粮食生产时空变化特征及驱动因素分析. 水利水电技术, 2020, 51(6):21-29.
Yang C X, Zheng H, Ou-Yang Z Y. Study on spatio-temporal variation characteristics and driving factors of grain production in Sanjiang Plain during 2000-2015. Water Res Hydr Eng, 2020, 51(6):21-29 (in Chinese with English abstract).
[9] 薛剑, 韩娟, 刘玉, 张凤荣. 河南省县域粮食生产格局变化及其影响因素. 地域研究与开发, 2013, 32(4):150-155.
Xue J, Han J, Liu Y, Zhang F R. Spatio-temporal dynamic change and its influencing factors of county-level grain production in Henan province. Areal Res Dev, 2013, 32(4):150-155 (in Chinese with English abstract).
[10] 苏阳. 黑龙江省农作物种植结构时空格局演变研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2015.
Su Y. Study on Temporal and Spatial Evaluation of Crop Pattern in Heilongjiang Province. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2015 (in Chinese with English abstract).
[11] 毕继业, 朱道林, 王秀芬, 陈百明. 基于GIS的县域粮食生产资源利用效率评价. 农业工程学报, 2008, 24(1):94-100.
Bi J Y, Zhu D L, Wang X F, Chen B M. GIS based study on grain productivity and resources utilization efficiency at county level in China. Trans CSAE, 2008, 24(1):94-100 (in Chinese with English abstract).
[12] 操信春. 中国粮食生产用水效率及其时空差异研究. 西北农林科技大学博士学位论文, 陕西杨凌, 2015.
Cao X C. Study on Spatial and Temporal Distribution of Water Use Efficiency in China’s Grain Production. PhD Dissertation of Northwest A & F University, Yangling, Shaanxi, China, 2015 (in Chinese with English abstract).
[13] 周宝元, 葛均筑, 侯海鹏, 孙雪芳, 丁在松, 李从锋, 马玮, 赵明. 黄淮海平原南部不同种植体系周年气候资源分配与利用特征研究. 作物学报, 2020, 46:937-949.
Zhou B Y, Ge J Z, Hou H P, Sun X F, Ding Z S, Li C F, Ma W, Zhao M. Characteristics of annual climate resource distribution and utilization for different cropping systems in the south of Yellow-Huaihe-Haihe Rivers plain. Acta Agron Sin, 2020, 46:937-949 (in Chinese with English abstract).
[14] 杨鑫, 穆月英. 中国粮食生产与水资源的时空匹配格局. 华南农业大学学报(社会科学版), 2019, 18(4):91-100.
Yang X, Mu Y Y. Spatial-temporal matching patterns of grain production and water resources. J South China Agric Univ (Soc Sci Edn), 2019, 18(4):91-100 (in Chinese with English abstract).
[15] 李帅. 1961-2017年中国主要粮食作物有效积温的时空变化及未来情景模拟. 西北师范大学硕士学位论文, 甘肃兰州, 2020.
Li S. Spatiotemporal Changes of Effective Accumulated Temperature of Major Food Crops in China from 1961 to 2017 and Simulation of Future Scenarios. MS Thesis of Northwest Normal University, Lanzhou, Gansu, China, 2020 (in Chinese with English abstract).
[16] 李明辉. 山东粮食生产水资源配置及优化策略研究. 山东农业大学博士学位论文, 山东泰安, 2019.
Li M H. Study on Water Resources Allocation and Optimization Strategies for Grain Production in Shandong. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2019 (in Chinese with English abstract).
[17] 陆大道, 樊杰. 2050: 中国的区域发展. 北京: 科学出版社, 2009. pp 117-120.
Lu D D, Fan J. 2050: China’s Regional Development. Beijing: Science Press, 2009. pp 117-120(in Chinese).
[18] 金涛, 陆建飞. 江苏省耕地变化与粮食生产地域分化. 农业现代化研究, 2011, 32:405-408.
Jin T, Lu J F. Cultivated land changes and regional disparity of grain production in Jiangsu province. Res Agric Modern, 2011, 32:405-408 (in Chinese with English abstract).
[19] 杨春, 陆文聪. 中国粮食生产空间布局变迁实证. 经济地理, 2008, 28:813-816.
Yang C, Lu W C. Empirical analysis of grain production spatial distribution changing in China. Econ Geogr, 2008, 28:813-816 (in Chinese with English abstract).
[20] 周成虎, 程维明, 钱金凯, 李炳元, 张百平. 中国陆地1:100万数字地貌分类体系研究. 地球信息科学学报, 2009, 11:707-724.
Zhou C H, Cheng W M, Qian J K, Li B Y, Zhang B P. Research on the classification system of digital land geomorphology of 1:1 000 000 in China. J Geo-inf Sci, 2009, 11:707-724 (in Chinese with English abstract).
[21] 胡文海. 中部地区粮食生产比较优势分析与基地建设. 地理科学, 2015, 35:293-298.
doi: 10.13249/j.cnki.sgs.2015.03.293
Hu W H. Comparative advantage of grain production in central China and the base construction. Sci Geogr Sin, 2015, 35:293-298 (in Chinese with English abstract).
[22] 王文森. 变异系数: 一个衡量离散程度简单而有用的统计指标. 中国统计, 2007, (6):41-42.
Wang W S. Coefficient of variation: a simple and useful statistical index to measure the degree of dispersion. China Stat, 2007, (6):41-42 (in Chinese).
[23] 李扬. 中国人口迁移时空格局的形成机理与模拟研究. 中国科学院大学博士学位论文, 北京, 2014.
Li Y. Research on the Mechanism and Simulation of Migration Spatiotemporal Configuration in China. PhD Dissertation of Chinese Academy of Sciences University, Beijing, China, 2014 (in Chinese with English abstract).
[24] 邓宗兵, 封永刚, 张俊亮, 王炬. 中国粮食生产区域格局变动及成因的实证分析. 宏观经济研究, 2014, (3):94-99.
Deng Z B, Feng Y G, Zhang J L, Wang J. Empirical analysis on the change of regional pattern of grain production and its causes in China. Macroecomomics, 2014, (3):94-99 (in Chinese).
[25] 王凤, 刘艳芳, 孔雪松, 陈奕云, 潘佳威. 中国县域粮食产量时空演变及影响因素变化. 经济地理, 2018, 38(5):142-151.
Wang F, Liu Y F, Kong X S, Chen Y Y, Pan J W. Spatial and temporal variation of grain production and its influencing factors at the county level in China. Econ Geogr, 2018, 38(5):142-151 (in Chinese with English abstract).
[26] 刘玉, 王国刚, 高秉博, 周艳兵. 中国粮食生产的区域格局变化研究: 基于1998-2010年的数据实证分析. 农业现代化研究, 2012, 33:673-677.
Liu Y, Wang G G, Gao B B, Zhou Y B. Spatio-temporal analysis of grain production at different levels in China: based on statistical data from 1998 to 2010. Res Agric Modern, 2012, 33:673-677 (in Chinese with English abstract).
[27] 黄欣乐, 郑百龙. 产量及面积视角的中国水稻生产变动. 江苏农业科学, 2020, 48:311-316.
Huang X L, Zheng B L. Changes of rice production in China from the perspective of yield and area. Jiangsu J Agric Sci, 2020, 48:311-316 (in Chinese).
[28] 徐志宇, 宋振伟, 邓艾兴, 陈武梅, 陈阜, 张卫建. 近30年我国主要粮食作物生产的驱动因素及空间格局变化研究. 南京农业大学学报, 2013, 36(1):79-86.
Xu Z Y, Song Z W, Deng A X, Chen W M, Chen F, Zhang W J. Regional changes of production layout of main grain crops and their actuation factors during 1981-2008 in China. J Nanjing Agric Univ, 2013, 36(1):79-86 (in Chinese with English abstract).
[29] 王小慧, 姜雨林, 刘洋, 卢捷, 尹小刚, 史磊刚, 黄晶, 褚庆全, 陈阜. 基于县域单元的我国水稻生产时空动态变化. 作物学报, 2018, 44:1704-1712.
Wang X H, Jiang Y L, Liu Y, Lu J, Yin X G, Shi L G, Huang J, Chu Q Q, Chen F. Spatio-temporal changes of rice production in China based on county unit. Acta Agron Sin, 2018, 44:1704-1712 (in Chinese with English abstract).
[30] 钟甫宁, 刘顺飞. 中国水稻生产布局变动分析. 中国农村经济, 2007, (9):39-44.
Zhong F N, Liu S F. Analysis on changes of rice production distribution in China. Chin Rural Econ, 2007, (9):39-44 (in Chinese).
[31] 李海舰, 薛继亮. 气候变化影响中国粮食生产的区域差异分析. 农业经济, 2013, (8):73-75.
Li H J, Xue J L. Analysis on regional differences of China’s grain production affected by climate change. Agric Econ, 2013, (8):73-75 (in Chinese).
[32] 朱丽萍. 有关茶叶种植现状与栽培管理技术的探析. 农家参谋, 2020, (21):56-57.
Zhu L P. Analysis on current situation and cultivation management technology of Guan tea. Farmers Cons, 2020, (21):56-57 (in Chinese).
[33] 李小盼. 气候变化背景下水果产业布局及金融支持研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2015.
Li X P. The Study of Fruit Industry Layout and Financial Support under Climate Change. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2015 (in Chinese with English abstract).
[1] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[2] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[3] ZHANG Jia-Kang, LI Fei, SHI Shu-De, YANG Hai-Bo. Construction and application of the critical nitrogen concentration dilution model of sugar beet in Inner Mongolia, China [J]. Acta Agronomica Sinica, 2022, 48(2): 488-496.
[4] LI Jin-Min, CHEN Xiu-Qing, YANG Qi, SHI Liang-Sheng. Deep learning models for estimation of paddy rice leaf nitrogen concentration based on canopy hyperspectral data [J]. Acta Agronomica Sinica, 2021, 47(7): 1342-1350.
[5] CUI Ying, LIN Hong-Hong, XIE Yun, LIU Su-Hong. Application study of crop yield prediction based on AquaCrop model in black soil region of Northeast China [J]. Acta Agronomica Sinica, 2021, 47(1): 159-168.
[6] Zhao-Lei YAO, Ji-Zong ZHANG, Yu-Qiong DU, Yu-Hua LIU, Li-Feng ZHANG. Productivity evaluation of crop rotation in cold and arid region of Northern China [J]. Acta Agronomica Sinica, 2020, 46(12): 1923-1932.
[7] FU Jiang-Peng,HE Zheng,JIA Biao,LIU Hui-Fang,LI Zhen-Zhou,LIU Zhi. Critical nitrogen dilution curve and nitrogen nutrition diagnosis of maize with drip irrigation [J]. Acta Agronomica Sinica, 2020, 46(02): 290-299.
[8] Zhong-Du CHEN,Chun-Chun XU,Long JI,Fu-Ping FANG. Assessment of the nitrogen footprint in oilseed rape production of China during 2004 to 2015 base on life cycle assessment method [J]. Acta Agronomica Sinica, 2019, 45(6): 932-940.
[9] Li-Li GUO,Xi-Xi ZHANG,Li-Hua HAO,Ya-Jun QIAO,Wen-Na CHEN,Yun-Ze LU,Fei LI,Xu CAO,Qing-Tao WANG,Yun-Pu ZHENG. Responses of leaf gas exchange to high temperature and drought combination as well as re-watering of winter wheat under doubling atmospheric CO2 concentration [J]. Acta Agronomica Sinica, 2019, 45(6): 949-956.
[10] ZHANG Jing-Ting,LYU Li-Hua,DONG Zhi-Qiang,ZHANG Li-Hua,YAO Yan-Rong,SHEN Hai-Ping,YAO Hai-Po,JIA Xiu-Ling. Yield-increasing effect of supplementary irrigation at winter wheat flowering and its influencing factors based on water and nitrogen coupling in north China [J]. Acta Agronomica Sinica, 2019, 45(11): 1746-1755.
[11] ZHANG Han-Xiao,LIN Shen,ZUO Qing-Song,YANG Guang,FENG Qian-Nan,FENG Yun-Yan,LENG Suo-Hu. Effects of plant density and N fertilizer spraying concentration on growth of rapeseed blanket seedlings [J]. Acta Agronomica Sinica, 2019, 45(11): 1691-1698.
[12] BAI Bing,YANG Yu-Hao,WANG Xiao-Hui,JIA Hao,WU Yao,SHI Lei-Gang,YIN Xiao-Gang,CHEN Fu. Spatio-temporal changes of China’s wheat production based on division of farming system during 1985-2015 [J]. Acta Agronomica Sinica, 2019, 45(10): 1554-1564.
[13] Fei LI,Liang LIU,Hao ZHANG,Qing-Tao WANG,Li-Li GUO,Li-Hua HAO,Xi-Xi ZHANG,Xu CAO,Wei-Jia LIANG,Yun-Pu ZHENG. Effects of CO2 Concentrations on Stomatal Traits and Gas Exchange in Leaves of Soybean [J]. Acta Agronomica Sinica, 2018, 44(8): 1212-1220.
[14] Lu-Lu LI,Bo MING,Rui-Zhi XIE,Ke-Ru WANG,Peng HOU,Shao-Kun LI. Grain Dehydration Types and Establishment of Mechanical Grain Harvesting Time for Summer Maize in the Yellow-Huai-Hai Rivers Plain [J]. Acta Agronomica Sinica, 2018, 44(12): 1764-1773.
[15] Hai-Xia WU,Li-Li GUO,Li-Hua HAO,Hao ZHANG,Qing-Tao WANG,Dong-Juan CHENG,Zheng-Ping PENG,Fei LI,Xi-Xi ZHANG,Shu-Bin LI,Ming XU,Yun-Pu ZHENG. Effects of Water and CO2 Concentration on Stomatal Traits, Leaf Gas Exchange, and Biomass of Winter Wheat [J]. Acta Agronomica Sinica, 2018, 44(10): 1570-1576.
Full text



No Suggested Reading articles found!