Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (6): 932-940.doi: 10.3724/SP.J.1006.2019.84112


Assessment of the nitrogen footprint in oilseed rape production of China during 2004 to 2015 base on life cycle assessment method

Zhong-Du CHEN,Chun-Chun XU,Long JI,Fu-Ping FANG()   

  1. China National Rice Research Institute, Hangzhou 311300, Zhejiang, China
  • Received:2018-08-23 Accepted:2019-01-12 Online:2019-06-12 Published:2019-06-12
  • Contact: Fu-Ping FANG E-mail:fangfuping@caas.cn
  • Supported by:
    This work was supported by the Project of National Key Research and Development Program of China(2016YFD0300210);the Project of National Natural Science Foundation of Zhejiang(LQ18G030013)


The loss of reactive nitrogen in agriculture has increasingly become serious, systematic analysis of reactive nitrogen emissions from agricultural production is conducive to promoting the green and healthy development of agriculture in China. Based on the statistical data of crop yield and farmland investment in the oilseed rape production of China, the spatiotemporal dynamic change of nitrogen footprint (NF) and its composition of oilseed rape during 2004-2015 in China was estimated using the theory of NF and life cycle assessment method in the agricultural sector. The NF of oilseed rape was 7572.0 g N-eq ha -1 during 2004-2015, and decreasing year by year, with an average annual decline of 1.0%. The main components of the NF were from fertilizer application (20%) and NH3 emission (54%) in the oilseed rape production. Obvious differences also were observed among mainly agricultural provinces in China, that is, the higher nitrogen footprint per area (NFa) and nitrogen footprint per yield (NFy) in Inner Mongolia, Shanghai, and Jiangsu region. The NFa and NFy in high yield region were significantly higher than those in low yield region. Among them, the NF of nitrogenous fertilizer, phosphate fertilizer and compound fertilizer increased by 80.6%, 76.9%, and 57.8%, respectively (P < 0.05). The NFa of rapeseed in China showed a trend of increase with the increase of rapeseed yield, but there was no significant correlation. The results suggest that improving crop management practices that limit fertilizer consumption is an important measure for the green and healthy development of rapeseed in China.

Key words: nitrogen footprint, oilseed rape, life cycle assessment, spatiotemporal distribution, China

Fig. 1

System boundary for calculating greenhouse gas (GHG) emissions"

Table 1

Index of active nitrogen emission of different material for agricultural production"

N2O emission coefficient
(g N-eq kg-1)
NOx emission coefficient
(g N-eq kg-1)
柴油Diesel 0.06 0.5
柴油燃烧Combustion 0.14 3.83
氮肥N 0.09 13.47
磷肥P2O5 0.013 2.16
钾肥K2O 0.017 2.90
杀虫剂 Insecticides 0.1661 13.18
除草剂 Herbicides 0.1015 8.06
杀菌剂 Fungicides 0.1057 8.41

Fig. 2

Nitrogen footprint per unit area (a) and nitrogen footprint per unit yield (b) in oilseed rape production of China from 2004 to 2015"

Table 2

Composition of nitrogen footprint of oilseed rape production of China from 2004 to 2015"

年份 Year
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
农资投入 Farm inputs (g N-eq hm-2)
氮肥 N 1659.7 1509.2 1574.3 1525.5 1454.3 1511.3 1470.6 1448.2 1346.5 1275.3 1303.8 1271.3
磷肥 P 59.3 76.3 79.5 73.7 56.7 63.2 54.4 55.7 49.9 45.3 38.8 38.5
钾肥 K 12.3 16.6 10.1 9.6 10.9 6.1 7.4 6.1 7.9 6.6 5.7 6.6
复混肥 CF 124.6 164.5 178.3 206.9 223.2 225.3 251.4 251.8 263.1 305.1 329.8 347.9
除草剂 H 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6
杀虫剂 In 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
杀菌剂 Fu 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4
柴油 D 31.1 29.8 27.6 35.8 38.4 46.4 49.9 52.1 63.5 71.2 91.2 101.3
直接活性氮损失 Direct reactive nitrogen loss
Nr-NH3 4413.2 4106.8 4296.2 4225.5 4076.0 4223.4 4168.5 4112.9 3877.3 3774.7 3891.9 3842.9
Nr-NO3- 353.7 329.2 344.4 338.7 326.7 338.5 334.1 329.7 310.8 302.6 312.0 308.0
Nr-NH4+ 1108.8 1031.8 1079.4 1061.6 1024.1 1061.1 1047.3 1033.4 974.2 948.4 977.8 965.5
Nr-N2O 289.7 269.6 282.0 277.3 267.5 277.2 273.6 270.0 254.5 247.8 255.5 252.3
NFa (g N-eq hm-2) 8114.0 7595.2 7933.4 7816.2 7539.5 7814.1 7718.9 7621.4 7209.1 7038.4 7267.9 7195.7
NFy (g N-eq kg-1) 4.02 3.97 4.03 3.57 3.73 3.92 4.11 3.90 3.69 3.37 3.62 3.45

Fig. 3

Distribution of nitrogen footprint per unit area, nitrogen footprint per unit yield and their trends of oilseed rape production during 2004-2015 in each province of China a: distribution of nitrogen footprint per unit area (NFa); b: distribution of nitrogen footprint per unit area trends during 2004-2015; c: distribution of nitrogen footprint per unit yield (NFy); d: distribution of nitrogen footprint per unit yield trends during 2004-2015."

Table 3

Nitrogen footprint, input and composition of industry in typical provinces of China"

氮足迹、投入及构成Nitrogen footprint, input and composition
高产High yield 低产 Low yield
省市 Province or municipality 上海 Shanghai 安徽 Anhui
江苏 Jiangsu 江西 Jiangxi
浙江 Zhejiang 湖南 Hunan
农资投入 氮肥N 2110.9±455.4 1168.9±211.1
Farm input (g N-eq hm-2) 磷肥P 68.1±21.1 38.5±10.2
钾肥K 3.9±1.2 12.1±6.5
复混肥CF 308.9±91.2 195.8±62.5
除草剂 H 1.6 1.6
杀虫剂 In 0.57 0.57
杀菌剂 Fu 59.35 59.35
柴油 D 49.8±11.3 30.47±8.7
氮足迹、投入及构成Nitrogen footprint , input and composition
高产High yield 低产 Low yield
田间直接氮损失 Nr-NH3 5888.6±1231.1 3306.1±721.5
Indirect emission in field Nr-NO3- 472.0±101.3 265.0±92.2
(g N-eq hm-2) Nr-NH4+ 1479.5±311.4 830.6±111.2
Nr-N2O 386.5±101.7 217.0±91.2
单位面积氮足迹 NFa (g N-eq hm-2) 10829.8±2221.1 6126.0±1101.6
产量 Yield (kg hm-2) 2328.0±913.4 1708.8±771.3
单位产量氮足迹 NFy (g N-eq kg-1) 4.74±1.14 3.61±1.01

Fig. 4

Relationship between the yield of rapeseed and nitrogen footprint per unit area (a) or nitrogen footprint per unit yield (b) in China"

[1] Sutton M A, Oenema O, Erisman J W, Leip A . Too much of a good thing. Nature, 2011,472:159-161.
[2] Erisman J W, Sutton M A, Galloway J, Klimont Z, Winiwarter W . How a century of ammonia synthesis changed the world. Nat Geosci, 2008,1:636-639.
doi: 10.1038/ngeo325
[3] 秦树平, 胡春胜, 张玉铭, 王玉英, 董文旭, 李晓欣 . 氮足迹研究进展. 中国生态农业学报, 2011,19:462-467.
Qin S P, Hu C S, Zhang Y M, Wang Y Y, Dong W X, Li X X . Advances in nitrogen footprint research. Chin J Eco-Agric, 2011,19:462-467 (in Chinese with English abstract).
[4] Xue X B, Landis A E . Eutrophication potential of food consumption patterns. Environ Sci Technol, 2010, 44:6450-6456.
doi: 10.1021/es9034478 pmid: 20704246
[5] Pierer M, Winiwarter W, Leach A M, Galloway J N , The nitrogen footprint of food products and general consumption patterns in Austria. Food Policy, 2014,49:128-136.
doi: 10.1016/j.foodpol.2014.07.004
[6] 傅廷栋 . 中国油菜生产与品种改良. 华中农业大学学报, 1999,18:501-504.
Fu T D . Rapeseed production and variety improvement in China. J Huazhong Agric Univ, 1999,18:501-504 (in Chinese with English abstract).
[7] 涂金星, 张冬晓, 张毅 . 我国油菜育种目标及品种审定问题的商榷. 中国油料作物学报, 2007,29:350-352.
Tu J X, Zhang D X, Zhang Y . Discussion on some standards of variety registration and breeding goals of Brassica napus in China. Chin J Oil Crop Sci, 2007,29:350-352 (in Chinese with English abstract).
[8] 徐华丽 . 长江流域油菜施肥状况调查及配方施肥效果研究. 华中农业大学硕士学位论文, 湖北武汉, 2012.
Xu H L . Investigation of Rapeseed Fertilization in Yangtze River Basin and Study on the Effect of Formula Fertilization. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei,China, 2012 (in Chinese with English abstract).
[9] Moldanová J, Grennfelt P, Jonsson Å. Nitrogen as a Threat to European Air Quality. New York: Cambridge University Press, 2011. pp 405-433.
[10] 陈中督 . 农作措施对双季稻田固碳减排效应与农户低碳技术采纳行为研究. 中国农业大学博士学位论文, 北京, 2017.
Chen Z D . Impacts of Farming Practices on Carbon Sequestration and Emission Mitigation in Double Rice Field and Farmers’ Adoption Behavior of Low Carbon Technology. PhD Dissertation of China Agricultural University, Beijing,China, 2017 (in Chinese with English abstract).
[11] Ibáñez-Forés V, Bovea M D, Simó A . Life cycle assessment of ceramic tiles. environmental and statistical analysis. Int J Life Cycle Assess, 2011,16:916-928.
doi: 10.1007/s11367-011-0322-6
[12] 梁龙 . 基于LCA的循环农业环境影响评价方法探讨及实证研究. 中国农业大学博士学位论文, 北京, 2009.
Liang L . Environmental Impact Assessment of Circular Agriculture Based on Life Cycle Assessment: Methods and Case Studies. PhD Dissertation of China Agricultural University, Beijing,China, 2009 (in Chinese with English abstract).
[13] 傅廷栋, 梁华东, 周广生 . 油菜绿肥在现代农业中的优势及发展建议. 中国农技推广, 2012,28(8):37-49.
Fu T D, Liang H D, Zhou G S . The advantages and development suggestions of rapeseed green manure in modern agriculture. China Agric Technol Extension, 2012,28(8):37-49 (in Chinese with English abstract).
[14] 邹娟, 鲁剑巍, 陈防, 李银水 . 长江流域油菜氮磷钾肥料利用率现状研究. 作物学报, 2011,37:729-734.
Zou J, Lu J W, Chen F, Li Y S . Status of nutrient use efficiencies of rapeseed in the Yangtze River basin. Acta Agron Sin, 2011,37:729-734 (in Chinese with English abstract).
[15] Gan Y, Liang C, Campbell C A, Zentner R P, Lemke R L, Wang H, Yang C . Carbon footprint of spring wheat in response to fallow frequency and soil carbon changes over 25 years on the semiarid Canadian prairie. Eur J Agron, 2012,43:175-184.
doi: 10.1016/j.eja.2012.07.004
[16] Breiling M, Hoshino T, Matsuhashi R. Contributions of Rice Production to Japanese Greenhouse Gas Emissions Applying Life Cycle Assessment as a Methodology. Laboratory for Land Resource Sciences, Department of Biological and Environmental Engineering, Graduate School for Agriculture and Life Sciences, Tokyo, and the University of Tokyo, 1999, p 32. .
[17] 王淳, 周卫, 李祖章 . 不同施氮量下双季稻连作体系土壤氨挥发损失研究. 植物营养与肥料学报, 2012,18:349-358.
Wang C, Zhou W, Li Z Z . Effects of different nitrogen application rates on ammonia volatilization from paddy fields under double-harvest rice system. Plant Nutr Fert Sci, 2012,18:349-358 (in Chinese with English abstract).
[18] 崔晓晨, 李安宁, 王国占 . 三大粮食作物农机作业成本及效益分析: 基于全国26个省的农机户问卷调查. 农机化研究, 2011,33(2):15-18.
Cui X C, Li A N, Wang G Z . Research on machinery cost of grain-production in China: based on a nationwide questionnaire survey. J Agric Mechanization Res, 2011,33(2):15-18 (in Chinese with English abstract).
[19] 董彦彬 . 2006年国内油菜籽产量与价格分析. 农业展望, 2006,2(7):26.
Dong Y B . Analysis of domestic rapeseed production and price in 2006. Agric Outlook. 2006,2(7):26 (in Chinese with English abstract).
[20] 伊然 . 大豆等6种农产品实行进口备案制. 中国油脂, 2008, ( 7):12.
Yi R . Soybean and other six agricultural products to implement the import record system. China Oils Fats, 2008, ( 7):12 (in Chinese).
[21] 陈魏涛, 曹宏鑫, 张保军, 张文宇 . 氮素营养诊断技术及其在油菜上的应用研究进展. 江苏农业学报, 2016,32:953-960.
Chen W T, Cao H X, Zhang B J, Zhang W Y . Research progresses in nitrogen diagnosis technology and its application in rapeseed. Jiangsu J Agric Sci, 2016,32:953-960 (in Chinese with English abstract).
[22] 张筱蕾, 刘飞, 聂鹏程 . 高光谱成像技术的油菜叶片氮含量及分布快速检测. 光谱学与光谱分析, 2014,34:2514-2518.
Zhang X L, Liu F, Nie P C . Rapid detection of nitrogen content and distribution in oilseed rape leaves based on hyperspectral imaging. Spectroscopy Spectral Anal, 2014,34:2514-2518 (in Chinese with English abstract).
[23] 任涛, 鲁剑巍 . 中国冬油菜氮素养分管理策略. 中国农业科学, 2016,49:3506-3521.
Ren T, Lu J W . Integrated nitrogen management strategy for winter oilseed rape (Brassica napus L.) in China. Sci Agric Sin, 2016,49:3506-3521 (in Chinese with English abstract).
[1] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[2] SHI Yu-Qin, SUN Meng-Dan, CHEN Fan, CHENG Hong-Tao, HU Xue-Zhi, FU Li, HU Qiong, MEI De-Sheng, LI Chao. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L [J]. Acta Agronomica Sinica, 2022, 48(4): 801-811.
[3] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[4] WANG Kai-Cheng, HAN Tong, ZANG Hua-Dong, CHEN Fu, BO Xiao-Zhi, CHU Qing-Quan. Spatial distribution of Chinese grain production in the past 30 years based on geomorphological division [J]. Acta Agronomica Sinica, 2021, 47(12): 2501-2510.
[5] CUI Ying, LIN Hong-Hong, XIE Yun, LIU Su-Hong. Application study of crop yield prediction based on AquaCrop model in black soil region of Northeast China [J]. Acta Agronomica Sinica, 2021, 47(1): 159-168.
[6] Zhao-Lei YAO, Ji-Zong ZHANG, Yu-Qiong DU, Yu-Hua LIU, Li-Feng ZHANG. Productivity evaluation of crop rotation in cold and arid region of Northern China [J]. Acta Agronomica Sinica, 2020, 46(12): 1923-1932.
[7] Jing LI,Jin-Yao YAN,Wen-Shi HU,Xiao-Kun LI,Ri-Huan CONG,Tao REN,Jian-Wei LU. Effects of combined application of nitrogen and potassium on seed yield and nitrogen utilization of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2019, 45(6): 941-948.
[8] ZHANG Jing-Ting,LYU Li-Hua,DONG Zhi-Qiang,ZHANG Li-Hua,YAO Yan-Rong,SHEN Hai-Ping,YAO Hai-Po,JIA Xiu-Ling. Yield-increasing effect of supplementary irrigation at winter wheat flowering and its influencing factors based on water and nitrogen coupling in north China [J]. Acta Agronomica Sinica, 2019, 45(11): 1746-1755.
[9] Wen-Xiang WANG,Wen CHU,De-Sheng MEI,Hong-Tao CHENG,Lin-Lin ZHU,Li FU,Qiong HU,Jia LIU. Quantitative trait loci mapping for branch angle and candidate gene screening in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(1): 37-45.
[10] DU Xiong,ZHANG Wei-Hong,ZHANG Yong-Sheng,CAO Cai-Yun,LI Ke-Jiang. Artificial Warming from Late Winter to Early Spring by Phased Plastic Mulching Increases Grain Yield of Winter Wheat [J]. Acta Agron Sin, 2016, 42(10): 1530-1540.
[11] SUN Wan-Cang1,**,LIU Hai-Qing1,**,LIU Zi-Gang1,*,WU Jun-Yan,LI Xue-Cai,FANG Yan,ZENG Xiu-Cun,XU Yao-Zhao,ZHANG Ya-Hong,DONG Yun. Critical Index Analysisof Safe Over-wintering Rate ofWinter Rapeseed (Brassica rapa) in Cold and Arid Region in North China [J]. Acta Agron Sin, 2016, 42(04): 609-618.
[12] WANG Yan-Zheng,WANG Xiao-Jing,LI Yuan,XU Hai,WANG Jia-Yu,ZHAO Ming-Hui,TANG Liang,MA Dian-Rong,XU Zheng-Jin,CHEN Wen-Fu. Analysis of Yield and Quality Traits and the Relationship between Them in Japonica Rice in the Northern China [J]. Acta Agron Sin, 2015, 41(06): 910-918.
[13] ZOU Hua-Wen,WANG Dao-Jie,BIAN Xiu-Xiu,SHANG Hai-Hong,YANG Xin-Quan. Analysis of NSFC Program Applications in Rice and Wheat Crops Genetics and Breeding Fields in Recent 15 Years [J]. Acta Agron Sin, 2015, 41(05): 820-828.
[14] ZHENG Yun-Pu,XU Ming,WANG Jian-Shu,QIU Shuai,WANG He-Xin. Responses of the Stomatal Traits and Gas Exchange of Maize Leaves to Climate Warming [J]. Acta Agron Sin, 2015, 41(04): 601-612.
[15] Lü Rui-Hua,JIN Xiao-Yun,ZHAO Ai-Chun,JI Jie,LIU Chang-Ying,LI Jun,PU Long,LU Cheng,YU Mao-De. Cross Infection, Biological Characteristics and Genetic Relationship between Pathogens of Hypertrophy Sorosis Sclerotenisis from Mulberry and Sclerotinia Stem Rot from Oilseed Rape [J]. Acta Agron Sin, 2015, 41(01): 42-48.
Full text



No Suggested Reading articles found!