Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (01): 42-48.doi: 10.3724/SP.J.1006.2015.00042


Cross Infection, Biological Characteristics and Genetic Relationship between Pathogens of Hypertrophy Sorosis Sclerotenisis from Mulberry and Sclerotinia Stem Rot from Oilseed Rape

LÜ Rui-Hua1,JIN Xiao-Yun2,ZHAO Ai-Chun1,JI Jie3,LIU Chang-Ying1,LI Jun1,PU Long3,LU Cheng1,YU Mao-De1   

  1. 1 College of Biotechnology / State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; 2 College of Agronomy and Biotechnology, Chongqing 400716, China; 3 Nanbu County Bureau of Sericulture, Sichuan Province, Nanbu 637300, China
  • Received:2014-04-02 Revised:2014-09-30 Online:2015-01-12 Published:2014-11-11
  • Contact: 余茂德, E-mail:yumd@163.com, Tel:023-68251309


Cross infection between ascospores of Ciboria shiraiana causing hypertrophy sorosis sclerotenisis in mulberry and Sclerotinia sclerotiorum causing Sclerotinia stem rot in oilseed rap. Inoculation results showed that ascospores of C. shiraiana infected oilseed rape, and ascospores of S. sclerotiorum infected sorosis similarly. Conidia and conidiophores appeared in the infected sorosis by C. shiraiana and S. sclerotiorum, but did not appear in the infected oilseed rape. The cross section showed a structure of capsule ascus round cell in C. shiraiana under microscope, but the texture angularity in S. sclerotiorm. Clustering based on SRAP of isolates from southwest areas showed C. shiraiana isolates from sorosis was classified into one group, and S. sclerotiorm isoplates from oilseed rape into a second group, with an except where one C. shiraiana isolate and one S. sclerotiorm isolate were clustered into an additional group. Cross infection of the two host plants by these two pathogen ascospores suggests that intercropping or interplanting of mulberry and oilseed rape is not feasible where the two pathogens/diseases exist.

Key words: Mulberry, Oilseed rape, Sclerotinia sclerotiorum, Cross contamination, SRAP molecular markers

[1]蒯元璋, 吴福安. 桑椹菌核病原及病害防治技术综述. 蚕业科学, 2012, 38: 1099–1104

Kuai Y Z, Wu F A. A review on pathogens of mulberry fruit sclerotiniosis and its control technology. J Sci Sericul, 2012, 38: 1099–1104 (in Chinese with English abstract)

[2]黄君霆, 朱万民, 夏建国, 向仲怀. 中国蚕丝大全. 成都: 四川科学技术出版社, 1996. pp 854–855

Huang J T, Zhu W M, Xia J G, Xiang Z H. Complete Works of Sericultural Technology in China. Chengdu: Sichuan Scientific & Technical Press, 1996. pp 854–855 (in Chinese)

[3]陈利锋, 徐敬友. 农业植物病理学(第3版). 北京: 中国农业出版社, 2009. pp 213–215

Chen L F, Xu J Y. Agricultural Phytopathology, 3rd edn. Beijing: China Agriculture Press, 2009. pp 213–215 (in Chinese)

[4]Adams P B, Ayers W A. Ecology of Sclerotinia species. Phytopathology, 1979, 69: 896–898

[5]杨新美. 油菜菌核病在我国的寄主范围及生态特性的调查研究. 植物病理学报, 1959, 2: 111–122

Yang X M. An investigation on the host range and some ecological aspects of the Sclerotinia disease of the rape plant. Acta Phytopathol Sin, 1959, 2: 111–122 (in Chinese with English abstract)

[6]郭文信, 薛春夫, 何来新, 董永强, 高深. 油菜高产栽培技术. 现代化农业, 1994, 5: 24–26

Guo W X, Xue C F, He L X, Dong Y Q, Gao S. High yield cultivation technoloyg of rape. Mod Agric, 1994, 5: 24–26 (in Chinese with English abstract)

[7]庄文颖. 中国真菌志. 北京: 科学出版社, 1998. pp 62–64

Zhuang W Y. Flora Fungorum Sinicorum. Beijing: Science Press, 1998. pp 62–64 (in Chinese)

[8]Purdy L H. Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution and impact. Phytopathology, 1979, 69: 875–880

[9]Abawi G S, Grogan R G. Epidemiology of diseases caused by Sclerotinia species. Phythopathology, 1979, 69: 899–904

[10]Schwartz H F, Steadman J R. Factors affecting sclerotium populations of, and apothecium production by Sclerotinia sclerotiorum. Phytopathology, 1978, 68: 383–388

[11]Steadman J R. Control of plant diseases caused by Sclerotinia species. Phytopathology, 1979, 69: 904–907

[12]Hao J J, Subbarao K V, Duniway J M. Germination of Sclerotinia minor and S.sclerotiorum sclerotia under various soil moisture and temperature Combinations. Phytopathology, 2003, 93: 443–450

[13]Wu B M, Subbarao K V. Effects of soil temperature, moisture, and burial depths on carpogenic germination of Sclerotinia sclerotiorum and S. minor. Ecol Epidemiol, 2008, 98: 1144–1152

[14]Mila A L, Yang X B. Effects of fluctuating soil temperature and water potential on sclerotia germination and apothecial production of Sclerotinia sclerotiorum. Plant Dis, 2008, 92: 78–82

[15]方中达. 植病研究方法. 北京: 中国农业出版社, 1998. pp 122–126

Fang Z D. Research Methods for Phytopathology. Beijing: China Agriculture Press, 1998. pp 122–126 (in Chinese)

[16]Mei J, Qian L, Disi J O, Yang X, Li Q, Frauen M, Cai D, Qian W. Identification of resistant sources against Sclerotinia sclerotiorum in Brassica species with emphasis on B. oleracea. Euphytica, 2011, 177: 393–399

[17]吴红发, 黄东益, 黄小龙, 周鑫, 程文杰. 几种内生真菌DNA提取方法的比较. 中国农学通报, 2009, 25: 62–64

Wu H F, Huang D Y, Huang X L, Zhou X, Cheng W J. Comparing study on several methods for DNA extraction from endophytic fungi. Chin Agric Sci Bull, 2009, 25: 62–64 (in Chinese with English abstract)

[18]中国农业科学院研究所, 中国桑树栽培学. 上海: 上海科学技术出版社, 1985. pp 300–301

The Research Institute of Chinese Academy of Agricultural Sciences. Cultivation Science of Mulberry Tree in China. Shanghai: Shanghai Scientific & Technical Press, 1985. pp 300–301 (in Chinese)

[19]Kimura K. Mulberry Disease of Japan. Tokyo: Kenpakusha Publishing House, 1979. pp 109–110 (in Japanese)

[20]Sung K H, Wang G K, Gyoo B S, Sung H N. Identification and distribution of two fungal species causing sclerotial disease on mulberry fruits in Korea. Mycobiology, 2007, 35: 87–90

[21]王仲怡, 包世英, 段灿星, 宗绪晓, 朱振东. 豌豆抗白粉病资源筛选及分子鉴定. 作物学报, 2013, 39: 1030–1038

Wang Z Y, Bao S Y, Duan C X, Zong X X, Zhu Z D. Screening and molecular identification of resistance to powdery mildew in pea germplasm. Acta Agron Sin, 2013, 39: 1030–1038 (in Chinese with English abstract)

[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] SHI Yu-Qin, SUN Meng-Dan, CHEN Fan, CHENG Hong-Tao, HU Xue-Zhi, FU Li, HU Qiong, MEI De-Sheng, LI Chao. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L [J]. Acta Agronomica Sinica, 2022, 48(4): 801-811.
[3] Zhong-Du CHEN,Chun-Chun XU,Long JI,Fu-Ping FANG. Assessment of the nitrogen footprint in oilseed rape production of China during 2004 to 2015 base on life cycle assessment method [J]. Acta Agronomica Sinica, 2019, 45(6): 932-940.
[4] Jing LI,Jin-Yao YAN,Wen-Shi HU,Xiao-Kun LI,Ri-Huan CONG,Tao REN,Jian-Wei LU. Effects of combined application of nitrogen and potassium on seed yield and nitrogen utilization of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2019, 45(6): 941-948.
[5] Wen-Xiang WANG,Wen CHU,De-Sheng MEI,Hong-Tao CHENG,Lin-Lin ZHU,Li FU,Qiong HU,Jia LIU. Quantitative trait loci mapping for branch angle and candidate gene screening in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(1): 37-45.
[6] CHEN Xue-Ping**,JING Ling-Yun**,WANG Jia,JIAN Hong-Ju,MEI Jia-Qin,XU Xin-Fu,LI Jia-Na,LIU Lie-Zhao*. Correlation Analysis of Sclerotinia Resistance with Lignin Content and Monomer G/S and its QTL Mapping in Brassica napus L. [J]. Acta Agron Sin, 2017, 43(09): 1280-1289.
[7] YU Jian,LIU Chang-Ying,ZHAO Ai-Chun,WANG Chuan-Hong,CAI Yu-Xiang,YU Mao-De*. Functional Analysis of 1-Aminocyclopropane-1-carboxylate Oxidase Gene’s Promoter in Mulberry [J]. Acta Agron Sin, 2017, 43(06): 839-848.
[8] LI Meng-Jiao,Lü Rui-Hua,YU Jian,CAI Yu-Xiang,WANG Chuan-Hong,ZHAO Ai-Chun,LU Cheng,YU Mao-De*. Cloning and Functional Analysis of Polygalacturonase Genes from Ciboria shiraiana [J]. Acta Agron Sin, 2016, 42(02): 199-200.
[9] WANG Xiao-Hong, ZHU Pan-Pan, LIANG Yan-Mei, HAN Shu-Mei, ZHAO Ai-Chun, WANG Chuan-Hong, LU Cheng, YU Mao-De. Molecular Cloning and Functional Analysis of Polygalacturonase-Inhibiting Protein Gene MaPGIP1 from Mulberry (Morus atropurpurea Roxb.) [J]. Acta Agron Sin, 2015, 41(09): 1361-1371.
[10] LIU Chang-Ying,Lü Rui-Hua,ZHU Pan-Pan,FAN Wei,LI Jun,WANG Xiao-Hong,LI Zhen-Gang,WANG Xi-Ling,ZHAO Ai-Chun,LU Cheng,YU Mao-De. Isolation and Expression of Mulberry (Morus alba L.) EIN2 Gene [J]. Acta Agron Sin, 2014, 40(07): 1205-1212.
[11] MA Tian-Tian,PENG Qi,CHEN Song,ZHANG Jie-Fu. Differential Expression of Defense Related Genes in Brassica napus Infected by Sclerotinia sclerotiorum [J]. Acta Agron Sin, 2014, 40(03): 416-423.
[12] HAN Fen-Xia,HAN Guang-Zhen,SUN Jun-Ming,ZHANG Jin-Wei,YU Shao-Xuan,YAN Shu-Rong,YANG Hua. Identification and Evaluation for Resistance to Sclerotinia Stem Rot in 44 Soybean Mini Core Collections [J]. Acta Agron Sin, 2013, 39(10): 1783-1790.
[13] CUI Jia-Cheng,LIU Jia,MEI De-Sheng,LI Yun-Chang,FU Li,PENG Peng-Fei,WANG Jun,HU Qiong. Genetic and Correlation Analysis on Pod Shattering Traits in Brassica napus L. [J]. Acta Agron Sin, 2013, 39(10): 1791-1798.
[14] HUANG Hai-Tao,RONG Xiang-Min,SONG Hai-Xing,LIU Qiang,LIAO Qiong,LUO Ji-Peng,GU Ji-Dong,GUAN Chun-Yun,ZHANG Zhen-Hua. Effect of Nitrate Reductase (NR) Inhibitor on NR Activity in Oilseed Rape (Brassica napus L.) and Its Relation to Nitrate Content [J]. Acta Agron Sin, 2013, 39(09): 1668-1673.
[15] WANG Yin,LU Jian-Wei,LI Xiao-Kun,REN Tao,CONG Ri-Huan,ZHAN Li-Ping. Effects of Nitrogen, Phosphorus, Potassium, and Boron Fertilizers on Winter Oilseed Rape (Brassica napus L.) Direct-sown in the Yangtze River Basin [J]. Acta Agron Sin, 2013, 39(08): 1491-1500.
Full text



No Suggested Reading articles found!