Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (03): 416-423.doi: 10.3724/SP.J.1006.2014.00416

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Differential Expression of Defense Related Genes in Brassica napus Infected by Sclerotinia sclerotiorum

MA Tian-Tian1,**,PENG Qi2,**,CHEN Song2,ZHANG Jie-Fu2,*   

  1. 1 National Key Laboratory of Crop Genetics and Germplasm Innovation, Nanjing Agricultural University, Nanjing 210095, China; 2 Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture / Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2013-07-02 Revised:2013-10-28 Online:2014-03-12 Published:2014-01-17
  • Contact: 张洁夫, E-mail: jiefu_z@163.com, Tel: 025-84390657

Abstract:

Sclerotinia stem rot is the main disease of rapeseed. Up to date, genes involved in defending Sclerotinia sclerotiorum have not been found in rapeseed and some other related plants. In order to reveal the disease resistance mechanism, we inoculated Sclerotinia sclerotiorum on the stems of resistant variety Ning RS-1 and susceptible one APL01, and compared eleven defensive related genes’ expression profiles between two varieties during the period of inoculation by using fluorescence quantitative PCR. Results showed that four genes (PGIP, Cu/ZnSOD, OXO, and GLP) were highly expressed both in Ning RS-1 and APL01, and the expression in Ning RS-1 was much higher than that in APL01. Especially, PGIP’s expression at 24 hours after inoculation (hai) with Sclerotinia sclerotiorum was 170.4 times as high as that at 0 hai in Ning RS-1, while it was only 3.5 times in APL01, and PGIP’s expression in Ning RS-1 was 1299.4 times as high as that at 24 hai in APL01. Two genes (LOX2 and PDF1.2)were expressed low both in Ning RS-1 and APL01, without significant difference between two varieties.Five genes (FeSOD, PAL, EDS1, PR1, and EIN3) were also expressed low in Ning RS-1 and APL01, without significant difference between two varieties. We inferred that the reason of resistance against Sclerotinia sclerotiorum in Ning RS-1 is related to the up-regulated expression of PGIP, which prevents the PGprotein in pathogen from degrading the cell wall of infected host tissues, resulting in the inhibition of incidence and spread of sclerotinia stem rot in rapeseed.

Key words: Sclerotinia sclerotiorum, Brassica napus, Defense gene, Differential expression

[1]李丽丽. 世界油菜病害研究概述. 中国油料, 1994, 16(1): 79–82



Li L L. The review of the world’s rapeseed disease. Chin J Oil Crop Sci, 1994, 16(1): 79–82 (in Chinese with English abstract)



[2]Purdy L H. Sclerotinia sclerotiorum: history, diseases and symptomatology, host range geographic distribution, and impact. Phytopathology, 1979, 69: 875–880



[3]Rajane L G, Henrik U S. Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol, 2004, 136: 3703–3711



[4]Collmer A, Keen N T. The role of pectic enzymes in plant pathogenesis. Annu Rev Phytopathol, 1986, 24: 383–409



[5]Steffen R, Friederike E M, Daguang C. Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum. J Exp Bot, 2012, 63: 5507–5519



[6]Zafer D B, Roger R, George G K, Dwayne D H. Brassica napus polygalacturonase inhibitor protein inhibit Sclerotinia sclerotiorum polygalacturonase enzymatic and necrotizing activities and delay symptoms in transgenic plants. Can J Microbiol, 2013, 59: 79–86



[7]Li R, Rimmer R, Buchwaldt L, Sharp A G. Interaction of Sclerotinia sclerotiorum with a resistant Brassica napus cultivar: expressed sequence tag analysis identifies genes associated with fungal pathogenesis. Fungal Genet. Biol, 2004, 41:735–753



[8]Mei J Q, Ding Y J, Liu S Y, Disi J O, Li J, Liu L, Liu S, Mckay J, Qian W. Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassica oleracea. Theor Appl Genet, 2013, 126: 549–556



[9]Wen L, Tan T L, Shu J B, Chen Y, Liu Y, Yang Z F, Zhang Q P, Yin M Z, Tao J, Guan C Y. Using proteomic analysis to find the proteins involved in resistance against Sclerotinia sclerotiorum in adult Brassica napus. Eur J Plant Pathol, 2013, DOI: 10.1007/s10658-013-0262-z



[10]刘仁虎, 赵建伟, 肖勇, 孟金陵. 拟南芥cDNA芯片和油菜一拟南芥比较作图相结合筛选甘蓝型油菜抗菌核病先验基因. 中国科学C辑: 生命科学, 2005, 35: 13–21



Liu R H, Zhao J W, Xiao Y, Meng J L. Identification of prior candidate genes for Sclerotinia local resistance in Brassica napus using Arabidopsis cDNA microarray and Brassica-Arabidopsis comparative mapping. Sci China Ser C: Life Sci, 2005, 35: 13–21 (in Chinese)



[11]刘丹, 刘贵华, 王汉中. 油菜抗性相关基因的分离及其基因工程研究进展. 中国农业科技导报, 2008, 10(3): 6–11



Liu D, Liu G H, Wang H Z. Isolation of resistant genes and their gene engineering research developments in rapeseed. J Agric Sci Technol, 2008, 10(3): 6–11 (in Chinese with English abstract)



[12]张洁夫, 傅寿仲, 戚存扣, 浦惠明, 陈玉卿, 顾炳朝, 陈新军, 高建芹. 油菜抗菌核病材料宁RS-1的选育与利用. 中国油料作物学报, 2002, 24(3): 6–9



Zhang J F, Fu S Z, Qi C K, Pu H M, Chen Y Q, Gu B C, Chen X J, Gao J Q. Breeding and utilization of Ning RS-1 resistance to sclerotinia stem rot in rapeseed (B. napus L.). Chin J Oil Crop Sci, 2002, 24(3): 6–9 (in Chinese with English abstract)



[13]周晓婴, 陈松, 戚存扣. 核盘菌诱导下甘蓝型油菜宁RS-1的SSH文库构建. 中国油料作物学报, 2011, 33: 157–161



Zhou X Y, Chen S, Qi C K. Construction of SSH cDNA library from Ning RS-1 after inoculation of Sclerotinia sclerotiorum. Chin J Oil Crop Sci, 2011, 33: 157–161 (in Chinese with English abstract)



[14]Gupta A S, Heinen J L, Holaday A S, Burke J J, Allen R D. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA, 1993, 90: 1629–1633



[15]Breusegem F V, Slooten L, Stassart J M, Moens T, Botterman J, Van Montaqu M, Inzé D. Over production of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize. Plant Cell Physiol, 1999, 40: 515–523



[16]Ramputh A I, Arnason J T, Cass L. Reduced herbivory of the European corn borer (Ostrinia nubilalis) on corn transformed with germin, a wheat oxalate oxidase gene. Plant Sci, 2002, 162: 431–440



[17]Dunwell J M. Microbial relatives of the seed storage proteins of high plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol Mol Biol Rev, 2000, 64: 153–179



[18]张宽朝, 金青, 蔡永萍, 林毅. 苯丙氨酸解氨酶与其在重要次生代谢产物调控中的作用研究进展. 中国农学通报, 2008, 24(12): 59–62



[19]Zhang K C, Jin Q, Cai Y P, Lin Y. Research progress of PAL and its control function of important secondav metabolltes. Chin Agric Sci Bull, 2008, 24(12): 59–62 (in Chinese with English abstract)



[20]Hahn M G, Bucheli P, Cervone F. The roles of cell wall constituents in plant pathogen interactions. Plant Microbe Interact, 1989, 3: 131–181



[21]Brodersen P, Petersen M, Bjorn N H, Zhu S, Newman M A, Shokat K M, Rietz S, Parker J, Mundy J. Arabidopsis MAP kinase 4 regulates salicylic acid and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J, 2006, 47: 532–546



[22]Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J. Acquired resistance in Arabidopsis. Plant Cell, 1992, 4: 645–656



[23]Feussner I, Kiihn H, Wasternack C. Lipoxygenase-dependent degradation of storage lipids. Trends Plant Sci, 2001, 6: 268–273



[24]Xu L M, Huang J Y, Liu X Q, Qin R, Liu S Y. Cloning of Brassica napus EIN3 gene and its expression induced by Sclerotinia sclerotiorum. Agric Sci & Tech, 2009, 10(2): 33–36



[25]Penninckx I A, Thomma B P, Buchala A, Métraux J P, Broekaert W F . Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell, 1998, 10: 2103–2113



[26]Zhao J, Meng J. Detection of loci controlling seed glucosinalate content and their association with Sclerotinia resistance in Brassica napus. Plant Breed, 2003, 122: 19–23



[27]王心宇, 杨恩东, 戚存扣, 陈松, 张洁夫, 杨清. 油菜cDNA表达文库构建及核盘菌致病因子互作蛋白的筛选与鉴定. 作物学报, 2008, 34: 192–197



Wang X Y, Yang E D, Qi C K, Chen S, Zhang J F, Yang Q. Construction of cDNA expression library of oilseed rape and screening and identification of interaction partner of PG, a virulence factor from Sclerotinia sclerotiorum. Acta Agron Sin, 2008, 34: 192–197 (in Chinese with English abstract)



[28]张洁夫, 傅寿仲, 戚存扣, 浦惠明, 伍晓明. 甘蓝型油菜无花瓣近等基因系的选育研究初报. 中国油料作物学报, 2002, 24(2): 15-21



Zhang J F, Fu S Z, Qi C K, Pu H M, Wu X M. Preliminary report of breeding for near-isogenic lines of apetalous in rapeseed (B. napus L.). Chin J Oil Crop Sci, 2002, 24(2): 15–21 (in Chinese with English abstract)



[29]马田田. 甘蓝型油菜抗菌核病QTL定位及相关基因表达分析. 南京农业大学硕士学位论文, 2012



Ma T T. Mapping of QTLs Associated with Disease Resistance to Sclerotinia sclerotiorum in Brassica napus and Expression Analysis of Resistance Related Gene. MS Thesis of Nanjing Agricultural University, 2012 (in Chinese with English abstract)



[30]齐绍武, 官春云, 刘春林. 甘蓝型油菜品系一些酶的活性与抗菌核病的关系. 作物学报, 2004, 30: 270–273



Qi S W, Guan C Y, Liu C L. Relationship between some enzyme activity and resistance to Sclerotinia sclerotiorum of rapeseed cultivars. Acta Agron Sin, 2004, 30: 270–273 (in Chinese with English abstract)



[31]杨鸯鸯, 李云, 丁勇, 徐春雷, 张成桂, 刘英, 甘莉. 甘蓝型油菜Cu/ZnSOD和FeSOD基因的克隆及菌核病菌诱导表达. 作物学报, 2009, 35: 71–78



Yang Y Y, Li Y, Ding Y, Xu C L, Zhang C G, Liu Y, Gan L. Cloning of Cu/Zn-Superoxide dismutase of Brassica napus and its induced expression by Sclerotinia sclerotiorum. Acta Agron Sin, 2009, 35: 71–78 (in Chinese with English abstract)



[32]郭泽建, 李德葆. 活性氧与植物抗病性. 植物学报, 2000, 42: 881–891



Guo Z J, Li D B. Active oxygen species in plant disease resistance. Acta Bot Sin, 2000, 42: 881–891 (in Chinese with English abstract)



[33]Carter C, Thornburg R W. Germin-like protein: structure, phyologeny and functin. J Plant Biol, 1999, 42: 97–108



[34]曾永三, 王振中. 苯丙氨酸解氨酶在植物抗病反应中的作用. 仲恺农业技术学院学报, 1999, 12(3): 56–65



Zeng Y S, Wang Z Z. Role of phenylalanine ammonia-lyase in plant disease resistance. J Zhongkai Agrotech Coll, 1999, 12(3): 56–65 (in Chinese with English abstract)



[35]Favaron F, Castiglioni C, Dilenna P. Inhibition of some rot fungi polygalacturonases by Allium cepa L. and Allium porrum L. extracts. Phytopathology, 1993, 139: 201–206



[36]Aya A, Jürgen E, Henrik U, Stotz. Interaction between polygalacturonase-inhibiting protein and jasmonic acid during defense activation in tomato against Botryis cinerea. Eur J Plant Pathol, 2010, 128: 423–428



[37]周晓婴, 陈松, 戚存扣. 核盘菌多聚半乳糖醛酸酶基因克隆及诱饵蛋白表达载体构建. 江苏农业科学, 2010, 26(4): 25–28



Zhou X Y, Chen S, Qi C K. Cloning of PG from Sclerotinia sclerotiorum and construction of a bait plasmid. Jiangsu Agric Sci, 2010, 26(4): 25–28 (in Chinese with English abstract)



[38]Corné M J, Antonio L R, Sjoerd V D, Van W S. Networking by small-molecule hormones in plant immunity. Nat Chem Biol, 2009, 5: 308–316



[39]任秋红, 黄军艳, 毛晗, 田保明, 刘胜毅. 甘蓝型油菜LOX2基因在MeJA、BTH和核盘菌诱导下的表达. 河南农业科学, 2010, 7(1): 22–25



Ren Q H, Huang J Y, Mao H, Tian B M, Liu S Y. Brassica napus LOX2 gene expression induced by methyl jasmonate (MeJA), benzothiadiazole(BTH), and Sclerotinia sclerotiorum. J Henan Agric Sci, 2010, 7(1): 22–25 (in Chinese with English abstract)



[40]Wiermer M, Feys B J, Parker J E. Plant immunity: the EDS1 regulatory node. Curr Opin Plant Biol, 2005, 8: 383–389



[41]姜伟丽. 油菜抗菌核病品种的筛选和抗性机理分析. 南京农业大学硕士学位论文, 2008



Jiang W L. The screening and resistant mechanism on Sclerotinia sclerotiorum tolerant on rapeseed varieties. MS Thesis of Nanjing Agricultural University, 2008 (in Chinese with English abstract)



[42]Mohamed E O, Kamal B. Plant signalling components EDS1 and SGT1 enhance disease caused by the necrotrophic pathogen Botrytis cinerea. New Phytol, 2007, 175: 131–139

[1] LI Fu, WANG Yan-Zhou, YAN Li, ZHU Si-Yuan, LIU Tou-Ming. Characterization of the expression profiling of circRNAs in the barks of stems in ramie [J]. Acta Agronomica Sinica, 2021, 47(6): 1020-1030.
[2] Ping LI,Wan-Wei HOU,Yu-Jiao LIU. Proteomic analysis of drought stress response on drought resistance for Vicia faba L. variety ‘Qinghai 13’ in Qinghai Plateau of China [J]. Acta Agronomica Sinica, 2019, 45(2): 267-275.
[3] CHEN Xue-Ping**,JING Ling-Yun**,WANG Jia,JIAN Hong-Ju,MEI Jia-Qin,XU Xin-Fu,LI Jia-Na,LIU Lie-Zhao*. Correlation Analysis of Sclerotinia Resistance with Lignin Content and Monomer G/S and its QTL Mapping in Brassica napus L. [J]. Acta Agron Sin, 2017, 43(09): 1280-1289.
[4] DO Thanh-Trung, LI Jian, ZHANG Feng-Juan, YANG Li-Tao, LI Yang-Rui,XING Yong-Xiu. Analysis of Differential Proteome in Relation to Drought Resistance in Sugarcane [J]. Acta Agron Sin, 2017, 43(09): 1337-1346.
[5] HOU Lin-Tao,WANG Teng-Yue,JIAN Hong-Ju,WANG Jia,LI Jia-Na,LIU Lie-Zhao. QTL Mapping for Seedling Dry Weight and Fresh Weight under Salt Stress and Candidate Genes Analysis in Brassica napus L. [J]. Acta Agron Sin, 2017, 43(02): 179-189.
[6] LU Kun,Shen Ge-Zi,LIANG Ying,FU Ming-Lian,HE Bin,TIE Lin-Mei,ZHANG Ye, PENG Liu,LI Jia-Na. Analysis of Yield Components with High Harvest Index in Brassica napusunder Environments Fitting Different Yield Levels [J]. Acta Agron Sin, 2017, 43(01): 82-96.
[7] WANG Wen-Xiang,HU Qiong,MEI De-Sheng,LI Yun-Chang,ZHOU Ri-Jin,WANG Hui,CHENG Hong-Tao,FU Li,LIU Jia*. Genetic Effects of Branch Angle Using Mixture Model of Major Gene Plus Polygene in Brassica napus L. [J]. Acta Agron Sin, 2016, 42(08): 1103-1111.
[8] TAN Tai-Long,FENG Tao,LUO Hai-Yan,PENG Ye,LIU Rui-Yang,GUAN Chun-Yun. Cloning and Characterization of Phospholipids:Diacylglycerol Acyltransferase (BnPDAT1) cDNA from Brassica napus L. [J]. Acta Agron Sin, 2016, 42(05): 658-666.
[9] KUAI Jie,DU Xue-Zhu,HU Man,ZENG Jiang-Xue,ZUO Qing-Song,WU Jiang-Sheng,ZHOU Guang-Sheng. Effect of Symbiosis Periods and Plant Densities on Growth and Yield of Rapeseed Intercropping Cotton [J]. Acta Agron Sin, 2016, 42(04): 591-599.
[10] LU Kun,QU Cun-Min,LI Sha,ZHAO Hui-Yan,WANG Rui,XU Xin-Fu,LIANG Ying,LI Jia-Na. Expression Analysis and eQTL Mapping of BnTT3 Gene in Brassica napus L. [J]. Acta Agron Sin, 2015, 41(11): 1758-1766.
[11] JIAO Cong-Cong,HUANG Ji-Xiang,WANG Yi-Long,ZHANG Xiao-Yu,XIONG Hua-Xin,NI Xi-Yuan,ZHAO Jian-Yi. Genetic Analysis of Yield-Associated Traits by Unconditional and Conditional QTL in Brassica napus [J]. Acta Agron Sin, 2015, 41(10): 1481-1489.
[12] TANG Min-Qiang,CHENG Xiao-Hui,TONG Chao-Bo,LIU Yue-Ying,ZHAO Chuan-Ji,DONG Cai-Hua,YU Jing-Yin,MA Xiao-Gen,HUANG Jun-Yan,LIU Sheng-Yi. Genome-wide Association Analysis of Plant Height in Rapeseed (Brassica napus) [J]. Acta Agron Sin, 2015, 41(07): 1121-1126.
[13] WANG Jia,JING Ling-Yun,JIAN Hong-Ju,QU Cun-Min,CHEN Li,LI Jia-Na,LIU Lie-Zhao. Quantitative Trait Loci Mapping for Plant Height, the First Branch Height, and Branch Number and Possible Candidate Genes Screening in Brassica napus L. [J]. Acta Agron Sin, 2015, 41(07): 1027-1038.
[14] ZHENG Xiao-Min,GUO Nan,GAO Tian-Shu,GONG Hui-Ming,ZHANG Tao. Cloning and Expression Analysis of Defensin Genes from Brassica napus [J]. Acta Agron Sin, 2015, 41(05): 725-732.
[15] ZHANG Ya-Jie,LI Jing,PENG Hong-Kun,CHEN Xiu-Bin,ZHENG Hong-Yu,CHEN Sheng-Bei,LIU An-Guo,HU Li-Yong. Dynamic Simulation Model for Growth Duration of Rapeseed (Brassica napus) [J]. Acta Agron Sin, 2015, 41(05): 766-777.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!