Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (07): 1205-1212.doi: 10.3724/SP.J.1006.2014.01205


Isolation and Expression of Mulberry (Morus alba L.) EIN2 Gene

LIU Chang-Ying1,LÜ Rui-Hua1,ZHU Pan-Pan1,FAN Wei1,LI Jun1,WANG Xiao-Hong1,LI Zhen-Gang2,WANG Xi-Ling1,ZHAO Ai-Chun1,LU Cheng1,YU Mao-De1,*   

  1. 1 College of Biotechnology, Southwest University / State Key Laboratory of Silkworm Genome Biology, Chongqing 400715, China; 2 Institution of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Yunnan Mengzi 661101, China.
  • Received:2013-11-21 Revised:2014-03-04 Online:2014-07-12 Published:2014-04-09
  • Contact: 余茂德, E-mail: yumd@163.com, Tel: 023-68250191 第一作者联系方式:E-mail: lcyswu@163.com


 EIN2 is a central component of ethylene signaling pathway, transferring the ethylene signal from endoplasmic reticulum to nucleus. A putative EIN2 gene obtained from Morus Genome Database and its expression levels were detected by using RT-PCR. The full-length genomic sequence of MaEIN2 is 5614 bp in length, which consists of seven exons and six introns. The CDS of MaEIN2 is 3921 bp and encodes 1036 amino acids. Phylogenetic tree analysis revealed that MaEIN2 had closer relationships with dicotyledons plants and further with monocotyledons plants. The expression levels of MaEIN2 in old leaf and mature fruit were much higher than these in young leaf and immature fruit. The expression levels of MaEIN2 was increasing gradually in fruit development, indicating MaEIN2 was involved in the ripening and senescence of plant organs. Ethephon, ABA and NaCl were used to incubate the mulberry seeds, showing that ethephon induced the expression of MaEIN2 in seedlings, while ABA and NaCl downregulated the expression of MaEIN2. This work lays a foundation for further understanding of the function of MaEIN2.

Key words: Mulberry, MaEIN2, Expression Analysis, Ethephon, ABA, NaCl

[1]Bleecker A B, Kende H. Ethylene: a gaseous signal molecule in plants. Ann Rev Cell  Dev Biol, 2000, 16: 1–18

[2]Johnson P R, Ecker J R. The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet, 1998, 32: 227–254

[3]Wang K L, Li H, Ecker J R. Ethylene biosynthesis and signaling networks. Plant Cell, 2002, 14: S131–S151

[4]Alonso J M, Stepanova A N. The ethylene signaling pathway. Science, 2004, 306: 1513–1515

[5]Ji Y, Guo H. From endoplasmic reticulum (ER) to nucleus: EIN2 bridges the gap in ethylene signaling. Mol Plant, 2013, 6: 11–14

[6]Ju C, Yoon G M, Shemansky J M, Lin D Y, Ying Z I, Chang J, Garrett W M, Kessenbrock M, Groth G, Tucker M L, Cooper B, Kieber J J, Chang C. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci USA, 2012, 109: 19486–19491

[7]Alonso J M, Hirayama T, Roman G, Nourizadeh S, Ecker J R. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 1999, 284: 2148–2152

[8]Beaudoin N, Serizet C, Gosti F, Giraudat J. Interactions between abscisic acid and ethylene signaling cascades. Plant Cell, 2000, 12: 1103–1115

[9]Su W, Howell S H. A single genetic locus ckr1, defines Arabidopsis mutants in which root growth is resistant to low concentrations of cytokinin. Plant Physiol, 1992, 99: 1569–1574

[10]Qiao H, Shen Z, Huang S S, Schmitz R J, Urich M A, Briggs S P, Ecker J R. Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science, 2012, 338: 390–393

[11]Bisson M M, Bleckmann A, Allekotte S, Groth G. EIN2, the central regulator of ethylene signaling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochem J, 2009, 424: 1–6

[12]Wen X, Zhang C, Ji Y, Zhao Q, He W, An F, Jiang  L, Guo H. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res, 2012, 22: 1613–1616

[13]Shibuya K, Barry K G, Ciardi J A, Loucas H M, Underwood B A, Nourizadeh S, Ecker J R, Klee H J, Clark D G. The central role of PhEIN2 in ethylene responses throughout plant development in petunia. Plant Physiol, 2004, 136: 2900–2912

[14]Lin Z, Zhong S, Grierson D. Recent advances in ethylene research. J Exp Bot, 2009, 60: 3311–3336

[15]Hu Z L, Deng L, Chen X Q, Wang P Q, Chen G P. Co-suppression of the EIN2-homology gene LeEIN2 inhibits fruit ripening and reduces ethylene sensitivity in tomato. Russian J Plant Physiol, 2010, 57: 554–559

[16]Oeller P W, Lu M W, Taylor L P, Pike D A, Theologis A. Reversible inhibition of fruit senescence by antisense RNA. Science, 1991, 254: 437–439

[17]Ayub R, Guis M, Ben Amor M, Gillot L, Roustan J P, Latché A, Bouzayen M, Pech J C. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe. Nat Bitechnol, 1991, 14: 862–866

[18]Bleecker A B, Estelle M A, Somerville C, Kende H. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science, 1988, 241: 1086–1089

[19]P Guzmán, Ecker J R. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell, 1990, 2: 513–523

[20]Lin Y, Chen D, Paul M, Zu Y, Tang Z. Loss-of-function mutation of EIN2 in Arabidopsis exaggerates oxidative stress induced by salinity. Acta Physiol Plant, 2013, 35: 1319–1328

[21]Wang Y, Liu C, Li K, Sun F, Hu H, Li X, Zhao Y, Han C, Zhang W, Duan Y, Liu M, Li X. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol Biol, 2007, 64: 633–644

[22]Lei G, Shen M, Li Z G, Zhang B, Duan K X, Wang N, Cao Y R, Zhang W K, Ma B, Ling H Q, Chen S Y, Zhang J S. EIN2 regulates salt stress response and interacts with a MA3 domain-containing protein ECIP1 in Arabidopsis. Plant Cell Environ, 2011, 34: 1678–1692
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[3] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[4] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[5] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[6] JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649.
[7] YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415.
[8] HE Xiao, LIU Xing, XIN Zheng-Qi, XIE Hai-Yan, XIN Yu-Feng, WU Neng-Biao. Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate [J]. Acta Agronomica Sinica, 2021, 47(10): 1941-1952.
[9] XIN Zheng-Qi, DAI Huan-Huan, XIN Yu-Feng, HE Xiao, XIE Hai-Yan, WU Neng-Biao. Effects of exogenous 2,4-Epibrassinolide on nitrogen metabolism and TAs metabolism of Atropa belladonna L. under NaCl stress [J]. Acta Agronomica Sinica, 2021, 47(10): 2001-2011.
[10] LI Guo-Ji, ZHU Lin, CAO Jin-Shan, WANG You-Ning. Cloning and functional analysis of GmNRT1.2a and GmNRT1.2b in soybean [J]. Acta Agronomica Sinica, 2020, 46(7): 1025-1032.
[11] HAN Le,DU Ping-Ping,XIAO Kai. Functional characteristics of TaPYR1, an abscisic acid receptor family gene in mediating wheat tolerance to drought stress [J]. Acta Agronomica Sinica, 2020, 46(6): 809-818.
[12] Jin-Feng ZHAO,Yan-Wei DU,Gao-Hong WANG,Yan-Fang LI,Gen-You ZHAO,Zhen-Hua WANG,Yu-Wen WANG,Ai-Li YU. Identification of PEPC genes from foxtail millet and its response to abiotic stress [J]. Acta Agronomica Sinica, 2020, 46(5): 700-711.
[13] Li-Ge BAO,Ping LU,Meng-Sha SHI,Yue XU,Min-Xuan LIU. Screening and identification of Chinese sorghum landraces for salt tolerance at germination and seedling stages [J]. Acta Agronomica Sinica, 2020, 46(5): 734-744.
[14] LIANG Si-Wei,JIANG Hao-Liang,ZHAI Li-Hong,WAN Xiao-Rong,LI Xiao-Qin,JIANG Feng,SUN Wei. Genome-wide identification and expression analysis of HD-ZIP I subfamily genes in maize [J]. Acta Agronomica Sinica, 2020, 46(4): 532-543.
[15] Tong-Hong ZUO, He-Cui ZHANG, Qian-Ying LIU, Xiao-Ping LIAN, Qin-Qin XIE, Deng-Ke HU, Yi-Zhong ZHANG, Yu-Kui WANG, Xiao-Jing BAI, Li-Quan ZHU. Molecular cloning and expression analysis of BoGSTL21 in self-incompatibility Brasscia oleracea [J]. Acta Agronomica Sinica, 2020, 46(12): 1850-1861.
Full text



No Suggested Reading articles found!