Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (07): 1213-1219.doi: 10.3724/SP.J.1006.2014.01213

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development and Universality Evaluation of EST-SSR Markers in Jute (Corchorus spp.) from GenBank Database

ZHANG Li-Wu**,YUAN Min-Hang**,HE Xiong-Wei,LIU Xing,FANG Ping-Ping,LIN Li-Hui,TAO Ai-Fen,XU Jian-Tang,QI Jian-Min*   

  1. Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops / College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
  • Received:2013-11-08 Revised:2014-03-04 Online:2014-07-12 Published:2014-04-08
  • Contact: 祁建民, E-mail: qijm863@163.com, Tel: 0591-87644898

Abstract:

Developing EST-SSR markers from GenBank Database is important in dissecting genetic base in jute. The aim of this study was to analyze SSR distribution in ESTs of jute, develop new EST-derived SSR markers, and validate polymorphisms of EST-SSR markers in jute. All 838 EST sequences of jute were downloaded from GenBank database. Sixty-six pairs of primers were screened by the software SSRPrimer and designed by the software Primer 3.0. The PCR products of these primers were detected by agarose gel electrophoresis. Polymorphism of six diverse accessions in jute was tested. Among these primers, 42 (63.6%) successfully amplified at least one clear and stable fragment from the jute genome and showed polymorphism between at least two diverse accessions. The polymorphic SSRs contained repeat motifs with (AT)n or (GC-)n, which could be regarded as the dominant motifs in jute. The EST-SSR markers in jute could be developed effectively, which can not only enrich the number of molecular markers, but also dissect genetic basis of important traits in jute.

Key words: Jute, EST, SSR, Marker development, Polymorphism

[1]熊和平. 麻类作物育种学. 北京: 中国农业科学技术出版社, 2008. pp 156–185



Xiong H P. Breeding Sciences of Bast and Leaf Fiber Crops. Beijing: China Agricultural Science and Technology Press, 2008. pp 156–185 (in Chinese)



[2]Rana M K, Arora K, Singh S, Singh A K. Multi-locus DNA fingerprinting and genetic diversity in jute (Corchorus spp.) based on sequence-related amplified polymorphism. J Plant Biochem Biotechnol, 2012, 22: 1–8



[3]Mir R R, Rustgi S, Sharma S, Singh R, Goyal A, Kumar J, Gaur A, Tyagi A, Khan H, Sinha M K, Balyan H S, Gupta P K. A preliminary genetic analysis of fibre traits and the use of new genomic SSRs for genetic diversity in jute. Euphytica, 2007, 161: 413–427



[4]Basu A, Ghosh M, Meyer R, Powell W, Basak S L, Sen S K. Analysis of genetic diversity in cultivated jute determined by means of SSR markers and AFLP profiling. Crop Sci, 2004, 44: 678–685



[5]Nishat S, Haseena K, Nadim A, Tofael K. Construction of an intraspecific linkage map of Jute. Asian J Plant Sci, 2006, 5: 758–762



[6]Das M, Banerjee S, Dhariwal R, Vyas S, Mir R, Topdar N, Kundu A, Khurana J, Tyagi A, Sarkar D, Sinha M, Balyan H, Gupta P. Development of SSR markers and construction of a linkage map in jute. J Genet, 2012, 91: 21–31



[7]Zhang L W, Li S P, Chen L, Yang G S. Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single Mendelian factor in Brassica napus L. Theor Appl Genet, 2012, 125: 695–705



[8]Temnykh S, DeClerckG, Lukashova A, Lipovich L, Cartinhour S, McCouch S. Computational and experimental analysis of microsatellitess in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res, 2001, 11: 1441–1452



[9]Russell J, Fuller J, Macaulay M, Hatz B, Jahoor A, Powell W, Waugh R. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet, 1997, 95: 714–722



[10]Pejic I, Ajmone-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G, Motto M. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor Appl Genet, 1998, 97: 1248–1255



[11]Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K. Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet, 2009, 118: 1121–1131



[12]Li, H, Chen X, Yang Y, Xu J, Gu J, Fu J, Qian X, Zhang S, Wu J, Liu K. Development and genetic mapping of microsatellite markers from whole genome shotgun sequences in Brassica oleracea. Mol Breed, 2010, 28: 585–596



[13]Xu, J, Qian X, Wang X, Li R, Cheng X, Yang Y, Fu J, Zhang S, King G, Wu J, Liu K. Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa. BMC Genom, 2010, 11: 594–603



[14]周东新, 祁建民, 吴为人, 李维明. 黄麻DNA提取与RAPD反应体系的建立. 福建农业大学学报, 2001, 30: 334–339



Zhou D X, Qi J M, Wu W R, Li W M. Studies on DNA extraction and establishment of RAPD reaction system in jute. J Fujian Agric Univ, 2001, 30: 334–339 (in Chinese with English abstract)



[15]Hong C, Piao Z, Kang T, Batley J, Yang T, Hur Y, Bhak J, Park B, Edwards D, Lim Y. Genomic distribution of simple sequence repeats in Brassica rapa. Mol Cells, 2007, 23: 349–356



[16]Goff S, Ricke D, Lan T, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange B, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun W, Chen L, Cooper B, Park S, Wood T, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller R M, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002, 296: 92–100



[17]张亚东, 彭婵, 李振芳, 杨彦伶, 胡兴宜. 基因组SSR与EST_SSR标记在杨树不同种间的遗传差异. 东北林业大学学报, 2011, 39(12): 8–11



Zhang Y D, Peng C, Li Z F, Yang Y L, Hu X Y. Genetic diversity of genomic- SSR and EST- SSR markers in interspecies of poplar. J Northeast For Univ, 2011, 39(12): 8–11 (in Chinese with English abstract)

[1] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
[2] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[3] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[4] YAN Sheng-Ji, DENG Ai-Xing, SHANG Zi-Yin, TANG Zhi-Wei, CHEN Chang-Qing, ZHANG Jun, ZHANG Wei-Jian. Characteristics of carbon emission and approaches of carbon mitigation and sequestration for carbon neutrality in China’s crop production [J]. Acta Agronomica Sinica, 2022, 48(4): 930-941.
[5] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[6] YANG Xin, LIN Wen-Zhong, CHEN Si-Yuan, DU Zhen-Guo, LIN Jie, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Li-Wu. Molecular identification of a geminivirus CoYVV and screening of resistant germplasms in jute [J]. Acta Agronomica Sinica, 2022, 48(3): 624-634.
[7] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[8] GUO Yan-Chun, YAO Jia-Yu, ZHANG Rong-Bin, CHEN Si-Yuan, HE Qing-Yao, TAO Ai-Fen, FANG Ping-Ping, QI Jian-Min, ZHANG Lie-Mei, ZHANG Li-Wu. Identification and phylogenetic analysis of the pathogen of jute anthracnose in China [J]. Acta Agronomica Sinica, 2022, 48(3): 770-777.
[9] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[10] YU Hui-Fang, ZHANG Wei-Na, KANG Yi-Chen, FAN Yan-Ling, YANG Xin-Yu, SHI Ming-Fu, ZHANG Ru-Yan, ZHANG Jun-Lian, QIN Shu-Hao. Genome-wide identification and expression patterns in response to signals from Phytophthora infestans of CrRLK1Ls gene family in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 249-258.
[11] YU Guo-Wu, QING Yun, HE Shan, HUANG Yu-Bi. Preparation and application of polyclonal antibody against SSIIb protein from maize [J]. Acta Agronomica Sinica, 2022, 48(1): 259-264.
[12] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
[13] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[14] HUANG Bing-Yan, SUN Zi-Qi, LIU Hua, FANG Yuan-Jin, SHI Lei, MIAO Li-Juan, ZHANG Mao-Ning, ZHANG Zhong-Xin, XU Jing, ZHANG Meng-Yuan, DONG Wen-Zhao, ZHANG Xin-You. Genetic analysis of fat content based on nested populations in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1100-1108.
[15] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!