Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (9): 2155-2167.doi: 10.3724/SP.J.1006.2022.13055

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Precise characterization and analysis of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot

DUAN Can-Xing1(), CUI Li-Na2, XIA Yu-Sheng1, DONG Huai-Yu3, YANG Zhi-Huan1, HU Qing-Yu1, SUN Su-Li1, LI Xiao2, ZHU Zhen-Dong1, WANG Xiao-Ming1,*()   

  1. 1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
    2. Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
    3. Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
  • Received:2021-09-16 Accepted:2022-01-05 Online:2022-09-12 Published:2022-02-09
  • Contact: WANG Xiao-Ming E-mail:duancanxing@caas.cn;wangxiaoming@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2016YFD0100103);Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2017-ICS);Project for Storing Corn in Science and Technology(CAAS-ZDRW2020004)

Abstract:

Ear rot is a severe disease in maize production in China, which often leads to a considerable decline in yield and quality. The development and utilization of resistant cultivars is an economical and effective method for controlling ear rot. Resistant resources are the material basis for resistance breeding. The methods for precise identification of maize germplasm resistance to ear rot were optimized and improved. Correlation analysis between silk channel inoculation and ear injection inoculation (traumatic inoculation) for screening of maize resistance to ear rot was performed and correlation coefficients (r) were not less than 0.90, indicating high correlation between maize ear rot resistance identified by silk channel and ear injection inoculation. The precise evaluation of 690 maize accessions resistance to Fusarium ear rot (FER, caused by Fusarium verticillioides) was conducted with silk channel inoculation at six different environments in Changping of Beijing and Xichang of Sichuan from 2018 to 2020. A total of 35 maize resources with stable FER resistance, such as H446, YCF, Liao 2309, Jizi 1055, Y1723, XF8-3, Tie 97085 and so on, were screened out, accounting for 5.07% of total accessions. Correlation coefficients of maize resistance to FER between any two sites among six different environments varied from 0 to 0.48. The r-values between two sites in 2018, 2019, and 2020 were 0.03, 0.20, and 0.15, respectively. The r-values between pairwise annual comprehensive FER resistance among three years were 0.20, 0.30, and 0.35, indicating that the resistance reaction of 690 accessions to FER exhibited obvious differences among different environments. During 2018-2020, 690 maize resources were precisely identified for resistance to Gibberella ear rot (GER, caused by Fusarium graminearum) with silk channel inoculation at six different environments in Shenyang of Liaoning and Xichang of Sichuan. Correlation coefficients of GER resistance in 690 maize resources between any two sites among six environments ranged from 0 to 0.39. The r-values between two sites in 2018, 2019, and 2020 were 0.05, 0.25, and 0.29, respectively, indicating that the environments had a relatively great influence on GER resistance in maize. The r-values between pairwise annual comprehensive GER resistance among three years were 0.14, 0.20, and 0.13, indicating considerable differences in annual comprehensive resistance. Seventeen inbred lines (H446, MC7528, Y1632, Y1679, Jizi 1055, Tie 97085, and so on) with stable resistance to GER at diverse environments were identified. The r-value of 0.52 between FER and GER resistance in 690 maize germplasm exhibited moderate correlation. The six-point experimental data for FER and GER resistance indicated three maize inbred lines (H446, Jizi 1055, and Tie 97085) expressed stable resistance to both FER and GSR, which were precious resources for breeding ear rot resistant varieties or improvement of cultivar resistance.

Key words: maize germplasm, Fusarium ear rot, Gibberella ear rot, silk channel inoculation, ear injection inoculation, precise characterization

Fig. 1

Seeding sketch map of maize accessions"

Table 1

Classification of disease score of maize resistance to ear rot"

病情分级 Scale 描述 Description
1 发病面积占果穗总面积0-1% 0-1% of the diseased ear surface
3 发病面积占果穗总面积2%-10% 2%-10% of the diseased ear surface
5 发病面积占果穗总面积11%-25% 11%-25% of the diseased ear surface
7 发病面积占果穗总面积26%-50% 26%-50% of the diseased ear surface
9 发病面积占果穗总面积51%-100% 51%-100% of the diseased ear surface

Table 2

The criteria of evaluation of maize resistance to ear rot"

平均发病级别
Ear rot score on average
抗性
Resistance
≤1.5 高抗 Highly resistant (HR)
1.6-3.5 抗 Resistant (R)
3.6-5.5 中抗 Moderately resistant (MR)
5.6-7.5 感 Susceptible (S)
7.6-9.0 高感 Highly susceptible (HS)

Fig. 2

Correlation analysis between silk channel inoculation and ear injection inoculation for screening of maize resistance to ear rot A: Fusarium ear rot (FER); B: Gibberella ear rot (GER)."

Fig. 3

Phenotypic characterization of maize resistance to Fusarium ear rot A: resistant; B: highly susceptible."

Fig. 4

Correlation analysis between maize resistance to Fusarium ear rot under different environments during 2018-2020 A: pairwise comparisons between any two sites among six ones; B: pairwise comparisons between any two annual comprehensive resistances."

Table 3

35 maize germplasm with stable resistance to Fusarium ear rot from precise characterization during 2018-2020"

材料名称
Name
2018 2019 2020 最高抗级
Highest
scale
综合抗性
Comprehensive resistance
杂种优势群
Heterotic
group
北京昌平
Changping, Beijing
四川西昌
Xichang, Sichuan
北京昌平
Changping, Beijing
四川西昌
Xichang, Sichuan
北京昌平
Changping, Beijing
四川西昌
Xichang, Sichuan
MC9292 5.4 5.0 3.0 5.2 4.0 4.8 5.4 中抗MR 唐四平头SPT
陇1447
Long 1447
4.6 3.0 5.0 3.6 4.9 4.9 5.0 中抗MR
陇1401
Long 1401
4.9 3.9 5.0 5.2 5.2 4.4 5.2 中抗MR PB
XF8-3 5.2 2.8 5.0 4.4 4.3 3.7 5.2 中抗MR PB
陇F0601
Long F0601
4.8 5.2 5.0 3.8 5.0 2.4 5.2 中抗MR NSS
H446 3.3 1.8 5.0 4.7 4.7 2.8 5.0 中抗MR Improved Reid
YCF 4.9 4.2 5.0 3.6 4.6 4.5 5.0 中抗MR
辽2309
Liao 2309
2.4 4.2 5.0 1.0 3.6 2.5 5.0 中抗MR PB
辽5114
Liao 5114
4.3 2.4 5.0 3.0 5.0 3.5 5.0 中抗MR Improved Reid
Y1723 4.3 3.9 5.0 4.1 3.5 5.2 5.2 中抗MR SS
HRB16055 5.0 4.8 5.3 4.6 5.3 中抗MR Improved Reid
辽8160
Liao 8160
5.0 5.0 3.7 4.5 5.0 中抗MR Improved Reid
XH-1 5.0 2.5 5.3 3.9 5.3 中抗MR Improved Reid
MC5850 4.2 5.0 3.0 5.3 5.3 中抗MR Improved Reid
ly325 4.2 1.6 5.0 4.9 5.0 中抗MR 混合群Mixed
陇1476
Long 1476
4.0 4.7 5.0 5.4 5.4 中抗MR Improved Reid
X47B 5.4 4.2 5.0 5.2 5.4 中抗MR 混合群Mixed
冀资13NB75
Jizi 13NB75
3.2 5.0 5.0 5.0 5.0 中抗MR NSS
冀资14L88
Jizi 14L88
4.1 3.3 5.0 5.3 5.3 中抗MR NSS
ZM138 4.0 2.6 5.0 4.2 5.0 中抗MR Improved Reid
T33336 3.8 1.8 3.0 4.6 4.6 中抗MR Improved Reid
HRB16060 3.7 5.1 3.0 5.1 5.1 中抗MR 混合群Mixed
HRB16073 3.6 4.8 5.0 5.5 5.5 中抗MR Lan
HRB16159 5.0 4.5 5.0 5.5 5.5 中抗MR Improved Reid
HRB16160 5.2 3.0 5.0 4.4 5.2 中抗MR Improved Reid
吉资1046
Jizi 1046
5.0 1.8 5.0 5.0 5.0 中抗MR PB
吉资1055
Jizi 1055
4.8 3.1 5.0 3.7 5.0 中抗MR 混合群Mixed
合344
He 344
3.3 5.2 5.0 4.7 5.2 中抗MR Lan
材料名称
Name
2018 2019 2020 最高抗级
Highest
scale
综合抗性
Comprehensive resistance
杂种优势群
Heterotic
group
北京昌平
Changping, Beijing
四川西昌
Xichang, Sichuan
北京昌平
Changping, Beijing
四川西昌
Xichang, Sichuan
北京昌平
Changping, Beijing
四川西昌
Xichang, Sichuan
沈3336
Shen 3336
3.9 5.3 5.0 4.9 5.3 中抗MR PB
丹337
Dan 337
1.4 5.1 5.0 1.9 5.1 中抗MR PB
铁97085
Tie 97085
4.2 3.6 5.0 3.5 5.0 中抗MR 混合群Mixed
辽1A407
Liao 1A407
3.8 3.6 5.0 4.3 5.0 中抗MR 唐四平头SPT
辽3348
Liao 3348
4.6 4.6 5.0 5.3 5.3 中抗MR Improved Reid
50014 5.0 2.6 5.0 3.9 5.0 中抗MR Improved Reid
50073 5.2 4.4 5.0 4.7 5.2 中抗MR 混合群Mixed

Table 4

17 maize germplasm with stable resistance to Gibberella ear rot from precise characterization during 2018-2020"

材料名称
Name
2018 2019 2020 最高抗级
Highest
scale
综合抗性
Comprehensive resistance
杂种优势群
Heterotic
group
辽宁沈阳
Shenyang, Liaoning
四川西昌
Xichang, Sichuan
辽宁沈阳
Shenyang, Liaoning
四川西昌
Xichang, Sichuan
辽宁沈阳
Shenyang, Liaoning
四川西昌
Xichang, Sichuan
MC7528 5.1 3.9 5.1 1.3 4.4 3.3 5.1 中抗MR NSS
H446 1.9 3.0 4.9 1.0 3.6 1.4 4.9 中抗MR Improved Reid
Y1632 4.8 1.4 5.5 1.9 4.1 3.0 5.5 中抗MR PB
Y1665 2.6 1.8 2.8 1.8 1.5 3.1 3.1 抗R PB
Y1679 5.2 4.1 5.3 1.0 2.9 2.3 5.3 中抗MR SS
HRB16101 4.1 3.2 1.6 1.8 4.1 中抗MR 混合群Mixed
M54 4.2 1.5 3.7 3.9 4.2 中抗MR 混合群/NSS Mixed/NSS
ct2273 5.3 2.8 3.3 3.0 5.3 中抗MR 混合群Mixed
MC7495 2.5 3.6 4.7 1.5 4.7 中抗MR 混合群Mixed
DXA048 4.7 4.9 5.5 1.8 5.5 中抗MR 混合群Mixed
吉资1055
Jizi 1055
2.4 1.8 5.0 1.8 5.0 中抗MR 混合群Mixed
四-287
Si-287
5.3 4.0 5.0 2.2 5.3 中抗MR 唐四平头SPT
铁97085
Tie 97085
5.3 1.8 5.3 2.2 5.3 中抗MR 混合群Mixed
16SD135 2.0 2.1 5.5 1.6 5.5 中抗MR SS
MY08N121 3.1 2.4 3.1 抗R NSS
D26 2.8 2.7 2.8 抗R
Pa91 3.1 1.7 3.1 抗R 混合群Mixed

Fig. 5

Phenotypic characterization of maize resistance to Gibberella ear rot A: highly resistant; B: highly susceptible."

Fig. 6

Correlation analysis between maize resistance to Gibberella ear rot under different environments during 2018-2020 A: Pairwise comparisons between any two sites among six ones; B: Pairwise comparisons between any two annual comprehensive resistances."

Fig. 7

Correlation analysis between Fusarium ear rot (FER) and Gibberella ear rot (GER) resistance in 690 maize germplasm"

[1] 段灿星, 董怀玉, 李晓, 李红, 李春辉, 孙素丽, 朱振东, 王晓鸣. 玉米种质资源大规模多年多点多病害的自然发病抗性鉴定. 作物学报, 2020, 46: 1135-1145.
doi: 10.3724/SP.J.1006.2020.03003
Duan C X, Dong H Y, Li X, Li H, Li C H, Sun S L, Zhu Z D, Wang X M. A large-scale screening of maize germplasm for resistance to multiple diseases in multi-plot demonstration for several years under natural condition. Acta Agron Sin, 2020, 46: 1135-1145. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.03003
[2] 宋立秋, 魏利民, 王振营, 何康来, 丛斌. 亚洲玉米螟与串珠镰孢菌复合侵染对玉米产量损失的影响. 植物保护学报, 2009, 36: 487-490.
Song L Q, Wei L M, Wang Z Y, He K L, Cong B. Effect of infestation by the Asian corn borer together with Fusarium verticillioides on corn yield loss. Acta Phytophy Sin, 2009, 36: 487-490. (in Chinese with English abstract)
[3] Mesterházy A, Lemmens M, Reid L M. Breeding for resistance to ear rots caused by Fusarium spp. in maize: a review. Plant Breed, 2012, 131: 1-19.
doi: 10.1111/j.1439-0523.2011.01936.x
[4] Campos-Bermudez V A, Fauguel C M, Tronconi M A, Casati P, Presello D A, Andreo C S. Transcriptional and metabolic changes associated to the infection by Fusarium verticillioides in maize inbreds with contrasting ear rot resistance. PLoS One, 2013, 8: e61580.
[5] 段灿星, 王晓鸣, 宋凤景, 孙素丽, 周丹妮, 朱振东. 玉米抗穗腐病研究进展. 中国农业科学, 2015, 48: 2152-2164.
Duan C X, Wang X M, Song F J, Sun S L, Zhou D N, Zhu Z D. Advances in research on maize resistance to ear rot. Sci Agric Sin, 2015, 48: 2152-2164. (in Chinese with English abstract)
[6] 中国农业科学院植物保护研究所, 中国植物保护学会. 中国农作物病虫害(第3版). 北京: 中国农业出版社, 2015. pp 570-664.
Institute of Plant Protection, Chinese Academy of Agricultural Sciences and China Society of Plant Protection. Crop Diseases and Insect Pests in China, 3rd edn. Beijing: China Agriculture Press, 2015. pp 570-664. (in Chinese)
[7] Gelderblom W C, Jaskiewicz K, Marasas W F, Thiel P G, Horak R M, Vleggaar R, Kriek N P J. Fumonisins-novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl Environ Microbiol, 1988, 54: 1806-1811.
doi: 10.1128/aem.54.7.1806-1811.1988
[8] Atanasova-Penichon V, Pons S, Pinson-Gadais L, Picot A, Marchegay G, Bonnin-Verdal M N, Ducos C, Barreau C, Roucolle J, Sehabiague P, Carolo P, Richard-Forget F. Chlorogenic acid and maize ear rot resistance: a dynamic study investigating Fusarium graminearum development, deoxynivalenol production, and phenolic acid accumulation. Mol Plant Microbe Interact, 2012, 25: 1605-1616.
doi: 10.1094/MPMI-06-12-0153-R
[9] Zhou D N, Wang X M, Chen G K, Sun S L, Yang Y, Zhu Z D, Duan C X. The major Fusarium species causing maize ear and kernel rot and their toxigenicity in Chongqing, China. Toxins, 2018, 10: 90.
doi: 10.3390/toxins10020090
[10] 杜青, 唐照磊, 李石初, 上官玲玲, 李华娇, 段灿星. 广西玉米穗腐病致病镰孢种群构成与毒素化学型分析. 中国农业科学, 2019, 52: 1895-1907.
Du Q, Tang Z L, Li S C, Shang-Guan L L, Duan C X. Composition of Fusarium species causing maize ear rot and analysis of toxigenic chemotype in Guangxi. Sci Agric Sin, 2019, 52: 1895-1907. (in Chinese with English abstract)
[11] 王宝宝, 郭成, 孙素丽, 夏玉生, 朱振东, 段灿星. 玉米穗腐病致病禾谷镰孢复合种的遗传多样性、致病力与产毒型分析. 中国农业科学, 2020, 53: 4777-4790.
Wang B B, Guo C, Sun S L, Xia Y S, Zhu Z D, Duan C X. Analysis of genetic diversity, pathogenicity and toxigenic types of maize ear rot pathogenic Fusarium graminearum complex species. Sci Agric Sin, 2020, 53: 4777-4790. (in Chinese with English abstract)
[12] 卢维宏, 黄思良, 陶爱丽, 武爱波, 王春梅, 黎起秦. 玉米穗腐病样品中层出镰刀菌的分离与鉴定. 植物保护学报, 2011, 38: 233-239.
Lu W H, Huang S L, Tao A L, Wu A B, Wang C M, Li Q Q. Isolation and identification of Fusarium strata in maize ear rot samples. Acta Phytophy Sin, 2011, 38: 233-239. (in Chinese with English abstract)
[13] 郭成, 魏宏玉, 郭满库, 何苏琴, 金社林, 陈红梅, 王晓鸣, 郭建国. 甘肃玉米穗腐病样品中轮枝镰孢菌的分离鉴定及生物学特性. 植物病理学报, 2014, 44: 17-25.
Guo C, Wei H Y, Guo M K, He S Q, Jin S L, Chen H M, Wang X M, Guo J G. Isolation, identification and biological characteristics of Fusarium verticillium from maize ear rot samples in Gansu. Acta Phytopathol Sin, 2014, 44: 17-25. (in Chinese with English abstract)
[14] Duan C X, Qin Z H, Yang Z H, Li W X, Sun S L, Zhu Z D, Wang X M. Identification of pathogenic Fusarium spp. causing maize ear rot and potential mycotoxin production in China. Toxins, 2016, 8: 186.
doi: 10.3390/toxins8060186
[15] 王宝宝, 毕四刚, 肖明纲, 张冬英, 闫强, 张彦彦, 杨树龙, 朱振东, 段灿星. 黑龙江省玉米穗腐病致病镰孢菌分离鉴定及产毒基因型分析. 草业学报, 2020, 29: 163-174.
Wang B B, Bi S G, Xiao M G, Zhang D Y, Yan Q, Zhang Y Y, Yang S L, Zhu Z D, Duan C X. Isolation and identification of the pathogenic Fusarium of maize ear rot in Heilongjiang province and analysis of its toxin-producing genotypes. Acta Pratacul Sin, 2020, 29: 163-174. (in Chinese with English abstract)
[16] Reid L M, Spaner D, Mather D E, Bolton A T, Hamilton R I. Resistance of maize hybrids and inbreds following silk inoculation with three isolates of Fusarium graminearum. Plant Dis, 1993, 77: 1248-1251.
doi: 10.1094/PD-77-1248
[17] Schaafsma A W, Nicol R W, Reid L M. Evaluating commercial maize hybrids for resistance to Gibberella ear rot. Eur J Plant Pathol, 1997, 103: 737-746.
doi: 10.1023/A:1008629629069
[18] 马秉元, 李亚玲, 龙书生, 李多川. 玉米穗粒腐病接种技术及品种抗病性鉴定. 植物保护学报, 1999, 26: 121-124.
Ma B Y, Li Y L, Long S S, Li D C. Inoculation technique of maize ear rot and identification of disease resistance of varieties. Acta Phytophy Sin, 1999, 26: 121-124. (in Chinese with English abstract)
[19] Martin M, Miedaner T, Dhillon B S, Ufermann U, Kessel B, Ouzunova M, Schipprack W, Melchinger A E. Colocalization of QTL for Gibberella ear rot resistance and low mycotoxin contamination in early European maize. Crop Sci, 2011, 51: 1935-1945.
doi: 10.2135/cropsci2010.11.0664
[20] Balconi C, Berardo N, Elli S L, Lanzanova C, Torri A, Redaelli R. Evaluation of ear rot (Fusarium verticillioides) resistance and fumonisin accumulation in Italian maize inbred lines. Phytopathol Mediterr, 2014, 53: 14-26.
[21] 段灿星, 王晓鸣, 武小菲, 杨知还, 宋凤景, 赵立萍, 孙素丽, 朱振东. 玉米种质和新品种对腐霉茎腐病和镰孢穗腐病的抗性分析. 植物遗传资源学报, 2015, 16: 947-954.
Duan C X, Wang X M, Wu X F, Yang Z H, Song F J, Zhao L P, Sun S L, Zhu Z D. Resistance analysis of maize germplasm and new varieties to Pythium stalk rot and Fusarium ear rot. J Plant Genet Resour, 2015, 16: 947-954 (in Chinese with English abstract).
[22] 徐婧, 姜钰, 秦培文, 刘可杰, 胡兰, 孙会杰, 徐秀德. 外引玉米种质对两种穗腐病原镰孢菌抗性鉴定. 植物遗传资源学报, 2019, 20: 20-25.
Xu J, Jiang Y, Qin P W, Liu K J, Hu L, Sun H J, Xu X D. Identification of the resistance of imported maize germplasm to two kinds of ear rot pathogen Fusarium. J Plant Genet Resour, 2019, 20: 20-25. (in Chinese with English abstract)
[23] 苏爱国, 王帅帅, 段赛茹, 张如养, 邢锦丰, 杨扬, 宋伟, 赵久然. 玉米抗禾谷镰孢菌穗粒腐病种质资源鉴定. 植物遗传资源学报, 2021, 22: 971-978.
Su A G, Wang S S, Duan S R, Zhang R Y, Xing J F, Yang Y, Song W, Zhao J R. Identification of maize germplasm resources resistant to Fusarium graminearum ear and kernel rot. J Plant Genet Resour, 2021, 22: 971-978. (in Chinese with English abstract)
[24] Mu C, Gao J Y, Zhou Z J, Wang Z, Sun X D, Zhang X C, Dong H F, Han Y N, Li X P, Wu Y B, Song Y X, Ma P P, Dong C P, Chen J F, Wu J Y. Genetic analysis of cob resistance to F. verticillioides: another step towards the protection of maize from ear rot. Theor Appl Genet, 2019, 132: 1049-1059.
doi: 10.1007/s00122-018-3258-4
[25] 赵子麒, 赵雅琪, 林昌朋, 赵永泽, 余宇潇, 孟庆立, 曾广莹, 薛吉全, 杨琴. 48份玉米自交系抗病性的精准鉴定. 中国农业科学, 2021, 54: 2510-2522.
Zhao Z Q, Zhao Y Q, Lin C P, Zhao Y Z, Yu Y X, Meng Q L, Zeng G Y, Xue J Q, Yang Q. Precise evaluation of 48 maize inbred lines to major diseases. Sci Agric Sin, 2021, 54: 2510-2522. (in Chinese with English abstract)
[26] Clements M J, Kleinschmidt C E, Maragos C M, Pataky J K, White D G. Evaluation of inoculation techniques for Fusarium ear rot and fumonisin contamination of corn. Plant Dis, 2003, 87: 147-153.
doi: 10.1094/PDIS.2003.87.2.147 pmid: 30812919
[27] 渠清, 李丽娜, 刘俊, 王绍新, 曹志艳, 董金皋. 我国部分常用玉米种质资源对镰孢菌病害的抗性评价. 中国农业科学, 2019, 52: 2962-2971.
Qu Q, Li L N, Liu J, Wang S X, Cao Z Y, Dong J G. Resistance evaluation of some commonly used maize germplasm resources to Fusarium diseases in China. Sci Agric Sin, 2019, 52: 2962-2971. (in Chinese with English abstract)
[28] 谭登峰. 玉米穗粒腐病抗性遗传分析. 四川农业大学博士学位论文, 四川雅安, 2005.
Tan D F. Study on the Heredity of Resistance to Maize Ear Rot and Prospect. PhD Dissertation of Sichuan Agricultural University, Ya’an, Sichuan, China, 2005 (in Chinese with English abstract).
[29] 王丽娟, 徐秀德, 刘志恒, 董怀玉, 姜钰, 张明会. 玉米抗镰刀菌穗腐病接种方法及抗病资源筛选研究. 植物遗传资源学报, 2007, 8: 145-148.
Wang L J, Xu X D, Liu Z H, Dong H Y, Jiang Y, Zhang M H. Inoculation technique and screening maize germplasm resistance to Fusarium ear rot. J Plant Genet Resour, 2007, 8: 145-148. (in Chinese with English abstract)
[30] Robertson L A, Kleinschmidt C E, White D G, Payne G A, Maragos C M, Holland J B. Heritabilities and correlations of Fusarium ear rot resistance and fumonisin contamination resistance in two maize populations. Crop Sci, 2006, 46: 353-361.
doi: 10.2135/cropsci2005.0139
[31] Silva E, Mora E A, Medina A, Vasquez J, Valdez D, Danial D L, Parlevliet J E. Fusarium ear rot and how to screen for resistance in open pollinated maize in the Andean regions. Euphytica, 2007, 153: 329-337.
doi: 10.1007/s10681-006-9171-y
[32] Eller M S, Robertson-Hoyt L A, Payne G A, Holland J B. Grain yield and Fusarium ear rot of maize hybrids developed from lines with varying levels of resistance. Maydica, 2008, 53: 231-237.
[33] Czembor E, Ochodzki P. Resistance of flint and dent maize forms for colonization by Fusarium spp. and mycotoxins contamination. Maydica, 2009, 54: 263-267.
[34] Reid L M, Hamilton R E, Mather D E. Screening Maize for Resistance to Gibberella Ear Rot. Publication 1996-5E, Agriculture and Agri-Food Canada, Technical Bulletin, Ottawa, ON, Canada, 1996. p 62. https://publications.gc.ca/site/eng/60395/publication.html.
[35] 段灿星, 朱振东, 武小菲, 杨知还, 王晓鸣. 玉米种质资源对六种重要病虫害的抗性鉴定与评价. 植物遗传资源学报, 2012, 13: 169-174.
Duan C X, Zhu Z D, Wu X F, Yang Z H, Wang X M. Screening and evaluation of maize germplasm for resistance to five diseases and Asian corn borer. J Plant Genet Resour, 2012, 13: 169-174. (in Chinese with English abstract)
[36] King S B, Scott G E. Site of action of factors for resistance to Fusarium moniliforme in maize. Plant Dis, 1984, 68: 804-806.
doi: 10.1094/PD-69-804
[37] Hoenisch R W, Davis R M. Relationship between kernel pericarp thickness and susceptibility to Fusarium ear rot in field corn. Plant Dis, 1994, 78: 517-519.
doi: 10.1094/PD-78-0517
[38] Byrne P F, McMullen M D, Wiseman B R, Snook M E, Musket T A, Theuri J M, Widstrom N W, Coe E H. Maize silk maysin concentration and corn earworm antibiosis: QTLs and genetic mechanisms. Crop Sci, 1998, 38: 461-471.
doi: 10.2135/cropsci1998.0011183X003800020032x
[39] Sampietro D A, Vattuone M A, Presello D A, Fauguel C M, Catalan C A N. The pericarp and its surface wax layer in maize kernels as resistance factors to fumonisin accumulation by Fusarium verticillioides. Crop Prot, 2009, 28: 196-200.
doi: 10.1016/j.cropro.2008.09.010
[40] Garcia-Muniz N, Martinez-Izquierdo J A, Puigdomenech P. Induction of mRNA accumulation corresponding to a gene encoding a cell wall hydroxyproline-rich glycoprotein by fungal elicitors. Plant Mol Biol, 1998, 38: 623-632.
doi: 10.1023/A:1006056000957
[41] Miller S S, Reid L M, Butler G, Winter S P, McGoldrick N J. Long chain alkanes in silk extracts of maize genotypes with varying resistance to Fusarium graminearum. J Agric Food Chem, 2003, 51: 6702-6708.
doi: 10.1021/jf0341363
[42] Cao A, Reid L M, Butrón A, Malvar R A, Souto X C, Santiago R. Role of hydroxycinnamic acids in the infection of maize silks by Fusarium graminearum Schwabe. Mol Plant Microbe Interact, 2011, 24: 1020-1026.
doi: 10.1094/MPMI-03-11-0079
[43] Picot A, Atanasova-Pénichon V, Pons S, Marchegay G, Barreau C, Pinson-Gadais L, Roucolle J, Daveau F, Caron D, Richard-Forget F. Maize kernel antioxidants and their potential involvement in Fusarium ear rot resistance. J Agric Food Chem, 2013, 61: 3389-3395.
doi: 10.1021/jf4006033
[1] DUAN Can-Xing,DONG Huai-Yu,LI Xiao,LI Hong,LI Chun-Hui,SUN Su-Li,ZHU Zhen-Dong,WANG Xiao-Ming. A large-scale screening of maize germplasm for resistance to multiple diseases in multi-plot demonstration for several years under natural condition [J]. Acta Agronomica Sinica, 2020, 46(8): 1135-1145.
[2] Wu Jingfeng; Tian Zhiguo;Yu Xiangyun; Man Xiufen. Studies on Combining Ability of Selecting Line Transfered Tropical Germplasm in Maize Population [J]. Acta Agron Sin, 1991, 17(06): 424-429.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!