Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (12): 3157-3170.doi: 10.3724/SP.J.1006.2025.52020

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic dissection and breeding application of rice yield-related QTL using single and dual segment substitution lines derived from CSSL-Z267

ZHANG Han,YU Jin-Jin,TAN Lin-Lu,ZHANG Jing-Quan,WANG Xiao-Dong,XIE Zhuang,XIE Ke-Ying, LING Ying-Hua,ZHAO Fang-Ming*   

  1. Rice Research Institute, Southwest University / Academy of Agricultural Sciences, Southwest University / Key Laboratory of Crop Molecular Improvement, Chongqing 400715, China
  • Received:2025-05-16 Revised:2025-09-10 Accepted:2025-09-10 Online:2025-12-12 Published:2025-09-22
  • Contact: 赵芳明, E-mail: zhaofangming2004@163.com E-mail:18809864123@163.com
  • Supported by:
    This study was supported by the National Natural Science Union Foundation of China (U23A20184) and the Chongqing Natural Science Foundation Project (CSTB2023NSCQ-MSX0124).

Abstract:

Rice yield-related traits, as typical quantitative traits, are controlled by multiple genes with minor effects. Mapping these genes using single segment substitution lines (SSSLs) not only provides an ideal system for dissecting their molecular mechanisms, but also lays a critical foundation for whole-genome design breeding by minimizing interference from genetic background. In this study, the chromosome segment substitution line Z267—carrying five donor segments in a Nipponbare genetic background—was used to construct a Nipponbare /Z267 F2 population, through which nine yield-related QTL were successfully identified. Further genetic dissection yielded five SSSLs and one double segment substitution line (DSSL). The results showed that all five SSSLs (S1–S5) carried positive-effect QTL that significantly increased grain length and secondary branch number, while also harboring negative-effect QTL that reduced grain width. In the DSSL (D1), multiple QTL interactions were observed: combinations of panicle length loci (qPL6 with qPL1), primary branch number loci (qNPB6 with qNPB1), and secondary branch number loci (qNSB1 with qNSB6) exhibited transgressive inheritance effects. Meanwhile, combinations of grain width (qGW6 with qGW1) and 1000-grain weight (qGWT6 with qGWT1) loci displayed sub-dominant effects. The genetic effects of grain length (qGL6 with qGL1) and plant height (qPH6 with qPH1) locus combinations were comparable to those of the single loci qGL1 and qPH6, respectively. Genetic effect analysis indicated that hybrid combinations of S1 and S5 could be effectively used to develop elite lines with taller plant architecture and slender grain morphology. Overall, this study systematically dissected the genetic effects of yield-related QTL, providing valuable theoretical insights and germplasm resources for elucidating molecular mechanisms and advancing whole-genome design breeding in rice.

Key words: rice, yield traits, QTL, chromosome segment substitution line, additive effect, QTL interaction

[1] Mohidem N A, Hashim N, Shamsudin R, Che Man H. Rice for food security: revisiting its production, diversity, rice milling process and nutrient content. Agriculture, 2022, 12: 741.

[2] Ahmad Rizal A R, Md Nordin S, Abd Rashid R, Hassim N. Decoding the complexity of sustainable rice farming: a systematic review of critical determining factor of farmers’ sustainable practices adoption. Cogent Food Agric, 2024, 10: 2334994.

[3] 杜明, 王阿红, 冯旗, 方玉. 我国作物设计育种体系发展及挑战. 作物杂志, 2024, (1): 1–7.
Du M, Wang A H, Feng Q, Fang Y. Development and challenge of crop breeding by design system in China. Crops, 2024, (1): 1–7 (in Chinese with English abstract).

[4] 朱末, 闻竞, 徐晨, 张艳. 分子设计育种技术: 农业遗传改良中的潜力与挑战. 玉米科学, 2024, 32(10): 9–16.
Zhu M, Wen J, Xu C, Zhang Y. Molecular design breeding technology: potential and challenge in agricultural genetic improvement. J Maize Sci, 2024, 32(10): 9–16 (in Chinese with English abstract).

[5] Khush G S. Green revolution: the way forward. Nat Rev Genet, 2001, 2: 815–822.

[6] Peleman J D, van der Voort J R. Breeding by design. Trends Plant Sci, 2003, 8: 330–334.

[7] Wang X Q, Pang Y L, Zhang J, Zhang Q, Tao Y H, Feng B, Zheng T Q, Xu J L, Li Z K. Genetic background effects on QTL and QTL × environment interaction for yield and its component traits as revealed by reciprocal introgression lines in rice. Crop J, 2014, 2: 345–357.

[8] 席章营, 朱芬菊, 台国琴, 李志敏. 作物QTL分析的原理与方法. 中国农学通报, 2005, 21(1): 88–92.
Xi Z Y, Zhu F J, Tai G Q, Li Z M. Principle and methodology of QTL analysis in crop. Chin Agric Sci Bull, 2005, 21(1): 88–92 (in Chinese with English abstract).

[9] Bu S H, Zhao X W, Yi C, Wen J, Tu J X, Zhang Y M. Interacted QTL mapping in partial NCII design provides evidences for breeding by design. PLoS One, 2015, 10: e0121034.

[10] 万建民. 作物分子设计育种. 作物学报, 2006, 32: 455–462.
Wan J M. Perspectives of molecular design breeding in crops. Acta Agron Sin, 2006, 32: 455–462 (in Chinese with English abstract).

[11] 薛勇彪, 王道文, 段子渊. 分子设计育种研究进展. 中国科学院院刊, 2007, 22: 486–490.
Xue Y B, Wang D W, Duan Z Y. Progress of research on crop breeding with molecular design. Bull Chin Acad Sci, 2007, 22: 486–490 (in Chinese with English abstract). 

[12] 贺丹, 雷雅凯, 王政, 刘艺平, 张曼, 何松林. 花卉遗传连锁图谱构建与QTL定位的研究进展. 分子植物育种, 2017, 15: 994–1002.
He D, Lei Y K, Wang Z, Liu Y P, Zhang M, He S L. Research progress on genetic linkage map construction and QTL mapping of flowers. Mol Plant Breed, 2017, 15: 994–1002 (in Chinese with English abstract). 

[13] Balakrishnan D, Surapaneni M, Mesapogu S, Neelamraju S. Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. Theor Appl Genet, 2019, 132: 1–25. 

[14] 张桂权. 基于SSSL文库的水稻设计育种平台. 遗传, 2019, 41: 754–760.
Zhang G Q. The platform of breeding by design based on the SSSL library in rice. Hereditas, 2019, 41: 754–760 (in Chinese with English abstract). 

[15] Ali M L, Sanchez P L, Yu S B, Lorieux M, Eizenga G C. Chromosome segment substitution lines: a powerful tool for the introgression of valuable genes from Oryza wild species into cultivated rice (O. sativa). Rice, 2010, 3: 218–234. 

[16] Kashiwagi T. Effects of rice grain protein QTL, TGP12, on grain composition, yield components, and eating quality with different nitrogen applications. Field Crops Res, 2021, 263: 108051. 

[17] 戴兴鑫, 刘艳洁, 李成霞, 汤睿, 牟佳美, 傅雪琳. 利用野生稻单片段代换系鉴定株高性状QTL. 广东农业科学, 2024, 51(11): 15–27.
Dai X X, Liu Y J, Li C X, Tang R, Mu J M, Fu X L. Identification of QTL for plant height traits in single-segment substitution lines of wild rice. Guangdong Agric Sci, 2024, 51(11): 15–27 (in Chinese with English abstract). 

[18] Sikirou M, Dramé K N, Saito K, Bocco R, Lorieux M. Phenotypic variation among IR64  ×  TOG5681 rice (Oryza sativa  ×  O. glaberrima) chromosome segment substitution lines (CSSL) in response to iron toxicity, and its associated QTLs. Euphytica, 2025, 221: 16. 

[19] Chen L L, Leng Y J, Zhang C Y, Li X X, Ye Z H, Lu Y, Huang L C, Liu Q, Gao J P, Zhang C Q, et al. Characterization of a major quantitative trait locus for the whiteness of rice grain using chromosome segment substitution lines. Plants, 2024, 13: 3588.  

[20] Deng K L, Zhang H, Wu J Y, Zhao Z W, Wang D C, Xu G Y, Yu J J, Ling Y H, Zhao F M. Development of single-segment substitution lines and fine-mapping of qSPP4 for spikelets per panicle and qGW9 for grain width based on rice dual-segment substitution line Z783. Int J Mol Sci, 2023, 24: 17305. 

[21] 程怡冰, 黄倩, 韩冰, 崔迪, 邱先进, 马小定, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位水稻苗期耐盐性QTL. 植物遗传资源学报, 2024, 25: 1245–1253.
Cheng Y B, Huang Q, Han B, Cui D, Qiu X J, Ma X D, Han L Z. QTLs analysis for salinity tolerance at seedling stage using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.). J Plant Genet Resour, 2024, 25: 1245–1253 (in Chinese with English abstract). 

[22] 郑镇武, 赵宏源, 梁晓娅, 王一珺, 王驰航, 巩高洋, 黄金燕, 张桂权, 王少奎, 刘祖培. 水稻qGL3.4调控籽粒大小与株型. 遗传, 2023, 45: 835–844.
Zheng Z W, Zhao H Y, Liang X Y, Wang Y J, Wang C H, Gong G Y, Huang J Y, Zhang G Q, Wang S K, Liu Z P. qGL3.4 controls kernel size and plant architecture in rice. Hereditas (Beijing), 2023, 45: 835–844 (in Chinese with English abstract). 

[23] Xing M, Nie Y M, Huang J F, Li Y P, Zhao M C, Wang S Z, Wang Y Y, Chen W X, Chen Z Y, Zhang L F, et al. A wild rice CSSL population facilitated identification of salt tolerance genes and rice germplasm innovation. Physiol Plant, 2024, 176: e14301. 

[24] Nounjan N, Siangliw J L, Toojinda T, Chadchawan S, Theerakulpisut P. Salt-responsive mechanisms in chromosome segment substitution lines of rice (Oryza sativa L. cv. KDML105). Plant Physiol Biochem, 2016, 103: 96–105. 

[25] 杨德卫, 朱镇, 张亚东, 林静, 陈涛, 赵凌, 朱文银, 王才林. 基于CSSL的水稻穗颈长度QTL的代换作图. 遗传, 2009, 31: 741–747.
Yang D W, Zhu Z, Zhang Y D, Lin J, Chen T, Zhao L, Zhu W Y, Wang C L. Substitution mapping of QTL for panicle exertion using CSSL in rice (Oryza sativa L.). Hereditas, 2009, 31: 741–747 (in Chinese with English abstract). 

[26] Xu G Y, Deng K L, Yu J J, Li Q L, Li L, Xiang A N, Ling Y H, Zhang C W, Zhao F M. Genetic effects analysis of QTLs for rice grain size based on CSSL-Z403 and its dissected single and dual-segment substitution lines. Int J Mol Sci, 2023, 24: 12013. 

[27] Wang D, Wang H, Xu X, Wang M, Wang Y, Chen H, Ping F, Zhong H, Mu Z, Xie W, et al. Two complementary genes in a presence-absence variation contribute to indica-japonica reproductive isolation in rice. Nat Commun, 2023, 14: 4531.

[28] 郭洁, 刘少隆, 周新桥, 陈达刚, 陈可, 叶婵娟, 李逸翔, 刘传光, 陈友订. 水稻籼粳杂种不育性的遗传机理及杂种优势利用. 广东农业科学, 2022, 49(9): 53–65.
Guo J, Liu S L, Zhou X Q, Chen D G, Chen K, Ye C J, Li Y X, Liu C G, Chen Y D. Genetic mechanism of hybrid sterility and utilization of indica-Japonica inter-subspecific heterosis in rice. Guangdong Agric Sci, 2022, 49(9): 53–65 (in Chinese with English abstract). 

[29] 赵芳明, 郭超, 魏霞, 杨正林, 凌英华, 桑贤春, 王楠, 张长伟, 李云峰, 何光华. 日本晴与5个优良恢复系的多态性标记筛选及遗传差异分析. 西南大学学报(自然科学版), 2016, 38(11): 1–7.
Zhao F M, Guo C, Wei X, Yang Z L, Ling Y H, Sang X C, Wang N, Zhang C W, Li Y F, He G H. Polymorphic SSR markers screening and genetic difference analysis between Nipponbare and five excellent restorer lines. J Southwest Univ (Nat Sci Edn), 2016, 38(11): 1–7 (in Chinese with English abstract).

[30] Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991, 127: 181–197. 

[31] 王大川, 汪会, 马福盈, 杜婕, 张佳宇, 徐光益, 何光华, 李云峰, 凌英华, 赵芳明. 增加穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位. 作物学报, 2020, 46: 140–146.
Wang D C, Wang H, Ma F Y, Du J, Zhang J Y, Xu G Y, He G H, Li Y F, Ling Y H, Zhao F M. Identification of rice chromosome segment substitution Line Z747 with increased grain number and QTL mapping for related traits. Acta Agron Sin, 2020, 46: 140–146 (in Chinese with English abstract). 

[32] McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76: 815–829. 

[33] Zhao F M, Tan Y, Zheng L Y, Zhou K, He G H, Ling Y H, Zhang L H, Xu S Z. Identification of rice chromosome segment substitution line Z322-1-10 and mapping QTLs for agronomic traits from the F3 population. Cereal Res Commun, 2016, 44: 370–380. 

[34] Liang P X, Wang H, Zhang Q L, Zhou K, Li M M, Li R X, Xiang S Q, Zhang T, Ling Y H, Yang Z L, et al. Identification and pyramiding of QTLs for rice grain size based on short-wide grain CSSL-Z563 and fine-mapping of qGL3-2. Rice, 2021, 14: 35. 

[35] 李璐, 谢庄, 谢可盈, 张瀚, 赵卓文, 向奥妮, 李巧龙, 凌英华, 何光华, 赵芳明. 水稻CSSL-Z492单、双片段代换系构建及粒型QTL的遗传解析. 中国农业科学, 2025, 58: 401–415.
Li L, Xie Z, Xie K Y, Zhang H, Zhao Z W, Xiang A N, Li Q L, Ling Y H, He G H, Zhao F M. Construction of single and dual-segment substitution lines from rice CSSL-Z492 and genetic dissection of QTL for grain size. Sci Agric Sin, 2025, 58: 401–415 (in Chinese with English abstract). 

[36] 刘立峰, 穆平, 张洪亮, 王毅, 李自超. 水、旱稻千粒重和产量QTL效应的验证. 中国农业科学, 2006, 39: 219–224.
Liu L F, Mu P, Zhang H L, Wang Y, Li Z C. Verification of the effects of QTLs for grain weight and yield in lowland rice and upland rice. Sci Agric Sin, 2006, 39: 219–224 (in Chinese with English abstract).

[37] 康雪蒙, 马梦影, 巩文靓, 段海燕. 水稻粒型基因研究进展及应用. 农学学报, 2020, 10(12): 21–25.
Kang X M, Ma M Y, Gong W J, Duan H Y. Rice grain shape genes: research progress and application. J Agric, 2020, 10(12): 21–25 (in Chinese with English abstract).

[38] Xing Y Z, Zhang Q F. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010, 61: 421–442.

[39] Zhang G Q. Target chromosome-segment substitution: a way to breeding by design in rice. Crop J, 2021, 9: 658–668.

[40] 王萱, 马茜茜, 杨金莲, 伍虎, 李容柏. 水稻抗褐飞虱基因Bph3Bph24(t)的聚合育种利用. 基因组学与应用生物学, 2024, 43(1): 31–44.
Wang X, Ma X X, Yang J L, Wu H, Li R B. Pyramided breeding by use of nilaparvatal lugens resistance genes Bph3 and Bph24(t) in rice. Genom Appl Biol, 2024, 43(1): 31–44 (in Chinese with English abstract).

[41] 赵芳明, 朱海涛, 丁效华, 曾瑞珍, 张泽民, 李文涛, 张桂权. 基于SSSL的水稻重要性状QTL的鉴定及稳定性分析. 中国农业科学, 2007, 40: 447–456.
Zhao F M, Zhu H T, Ding X H, Zeng R Z, Zhang Z M, Li W T, Zhang G Q. Detection of QTLs for traits of agronomic importance and analysis of their stabilities using SSSLs in rice. Sci Agric Sin, 2007, 40: 447–456 (in Chinese with English abstract).

[42] Qian Q, Guo L B, Smith S M, Li J Y. Breeding high-yield superior quality hybrid super rice by rational design. Natl Sci Rev, 2016, 3: 283–294.

[43] Zhang S Y, Ji Z, Jiao W, Shen C B, Qin Y J, Huang Y Z, Huang M H, Kang S M, Liu X, Li S Q, et al. Natural variation of OsWRKY23 drives difference in nitrate use efficiency between indica and Japonica rice. Nat Commun, 2025, 16: 1420.

[44] Zhang Q L, Wu R H, Hong T, Wang D C, Li Q L, Wu J Y, Zhang H, Zhou K, Yang H X, Zhang T, et al. Natural variation in the promoter of qRBG1/OsBZR5 underlies enhanced rice yield. Nat Commun, 2024, 15: 8565.

[45] 张龙廷, 吴静, 熊喜娟, 董景芳, 张少红, 赵均良, 刘自强, 杨梯丰. 基于单片段代换系的水稻苗高QTL定位和上位性效应分析. 华南农业大学学报, 2023, 44: 881–888.
Zhang L T, Wu J, Xiong X J, Dong J F, Zhang S H, Zhao J L, Liu Z Q, Yang T F. QTL mapping and epistatic effect analysis of seedling height based on single segment substitution lines in rice. J South China Agric Univ, 2023, 44: 881–888 (in Chinese with English abstract).

[46] Ren D Y, Ding C Q, Qian Q. Molecular bases of rice grain size and quality for optimized productivity. Sci Bull, 2023, 68: 314–350.

[47] 黄佳成, 彭锐, 丁家麒, 邱琪, 刘桃李. 水稻粒型相关基因的研究进展. 农村实用技术, 2025, (1): 87–88.
Huang J C, Peng R, Ding J Q, Qiu Q, Liu T L. Research progress of rice grain type-related genes. Appl Technol Rural Areas, 2025, (1): 87–88 (in Chinese).

[48] 龚成云, 朱裕敬, 桂金鑫, 石居斌, 罗新阳, 曾哲, 张海清, 贺记外. 水稻粒型全基因组关联分析. 农业生物技术学报, 2024, 32: 2447–2461.
Gong C Y, Zhu Y J, Gui J X, Shi J B, Luo X Y, Zeng Z, Zhang H Q, He J W. Genome-wide association analysis of rice (Oryza sativa) grain shape. J Agric Biotechnol, 2024, 32: 2447–2461 (in Chinese with English abstract).

[49] 严语萍, 俞晓琦, 任德勇, 钱前. 水稻穗粒数遗传机制与育种利用. 植物学报, 2023, 58: 359–372.
Yan Y P, Yu X Q, Ren D Y, Qian Q. Genetic mechanisms and breeding utilization of grain number per panicle in rice. Chin Bull Bot, 2023, 58: 359–372 (in Chinese with English abstract).

[50] 刘雪薇, 吴朝昕, 姜雪, 龙武华, 朱速松. 基于重测序定位水稻株高QTL. 种子, 2025, 44(3): 26–32.
Liu X W, Wu C X, Jiang X, Long W H, Zhu S S. Locating rice plant height QTL based on resequencing. Seed, 2025, 44(3): 26–32 (in Chinese with English abstract).

[51] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707–711.

[52] Gao Q, Zhang N, Wang W Q, Shen S Y, Bai C, Song X J. The ubiquitin-interacting motif-type ubiquitin receptor HDR3 interacts with and stabilizes the histone acetyltransferase GW6a to control the grain size in rice. Plant Cell, 2021, 33: 3331–3347.

[53] Qiao J Y, Jiang H Z, Lin Y Q, Shang L G, Wang M, Li D M, Fu X D, Geisler M, Qi Y H, Gao Z Y, et al. A novel miR167a-OsARF6-OsAUX3 module regulates grain length and weight in rice. Mol Plant, 2021, 14: 1683–1698.

[54] Biswal A K, Wu T Y, Urano D, Pelissier R, Morel J B, Jones A M, Biswal A K. Novel mutant alleles reveal a role of the extra-large G protein in rice grain filling, panicle architecture, plant growth, and disease resistance. Front Plant Sci, 2021, 12: 782960.

[55] Lu S, Zhang N, Xu Y Z, Chen H, Huang J, Zou B H. Functional conservation and divergence of MOS1 that controls flowering time and seed size in rice and Arabidopsis. Int J Mol Sci, 2022, 23: 13448.

[56] Eom J S, Cho J I, Reinders A, Lee S W, Yoo Y, Tuan P Q, Choi S B, Bang G, Park Y I, Cho M H, et al. Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. Plant Physiol, 2011, 157: 109–119.

[57] Zhang X J, Wang J F, Huang J, Lan H X, Wang C L, Yin C F, Wu Y Y, Tang H J, Qian Q, Li J Y, et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA, 2012, 109: 21534–21539.

[58] Liu J X, Wu X B, Yao X F, Yu R, Larkin P J, Liu C M. Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains. Proc Natl Acad Sci USA, 2018, 115: 11327–11332.

[59] Liu Y T, Chen X, Xue S Y, Quan T Y, Cui D, Han L Z, Cong W X, Li M T, Yun D J, Liu B, et al. SET DOMAIN GROUP 721 protein functions in saline-alkaline stress tolerance in the model rice variety Kitaake. Plant Biotechnol J, 2021, 19: 2576–2588.

[60] Zhang Z Y, Li J J, Tang Z S, Sun X M, Zhang H L, Yu J P, Yao G X, Li G L, Guo H F, Li J L, et al. Gnp4/LAX2, a RAWUL protein, interferes with the OsIAA3-OsARF25 interaction to regulate grain length via the auxin signaling pathway in rice. J Exp Bot, 2018, 69: 4723–4737.

[61] Xiao Y H, Liu D P, Zhang G X, Tong H N, Chu C C. Brassinosteroids regulate OFP1, a DLT interacting protein, to modulate plant architecture and grain morphology in rice. Front Plant Sci, 2017, 8: 1698.

[62] Irshad F, Li C, Wu H Y, Yan Y, Xu J H. The function of DNA demethylase gene ROS1a null mutant on seed development in rice (Oryza sativa) using the CRISPR/CAS9 system. Int J Mol Sci, 2022, 23: 6357.

[63] Qin S S, Li W, Zeng J Y, Huang Y F, Cai Q. Rice tetraspanins express in specific domains of diverse tissues and regulate plant architecture and root growth. Plant J, 2024, 117: 892–908.

[64] Lu L H, Qiu W M, Gao W W, Tyerman S D, Shou H X, Wang C. OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus. Plant Cell Environ, 2016, 39: 2247–2259.

[65] Chang S W, Huang G Q, Wang D X, Zhu W W, Shi J X, Yang L T, Liang W Q, Xie Q, Zhang D B. Rice SIAH E3 ligases interact with RMD formin and affect plant morphology. Rice, 2022, 15: 6.

[1] WANG Chan, WU Ying-Ying, LI Wen-Qi, LI Xia, WANG Fang-Quan, ZHOU Tong, YANG Jie. Development of functional markers of rice stripe disease resistance gene STV11 based on HRM technique [J]. Acta Agronomica Sinica, 2025, 51(9): 2547-2556.
[2] GUO Bao-Wei, WANG Wang, WANG Kai, WANG Yan, ZENG Xin, JING Xiu, WANG Jing, NI Xin-Hua, XU Ke, ZHANG Hong-Cheng. Population dynamic characteristics and formation mechanisms of super high-yielding of two types of glutinous rice in the middle and lower reaches of the Yangtze Rive [J]. Acta Agronomica Sinica, 2025, 51(9): 2433-2453.
[3] ZHANG Fei-Fei, HE Wan-Long, JIAO Wen-Juan, BAI Bin, GENG Hong-Wei, CHENG Yu-Kun. Meta-analysis of stripe rust resistance-associated traits and candidate gene identification in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2111-2127.
[4] CHEN Hui-Ying, HE Jia-Xin, ZHU Bin, HUANG Shi-Xuan, ZHOU Xing-You, WU Jun-Quan, YANG Mei-Yan. Whole genome analysis and biological characterization of phage vB_XaS_ HDB2 infected with Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2025, 51(8): 2087-2099.
[5] YANG Hai-Yang, WU Lin-Xuan, LI Bo-Wen, SHI Han-Feng, YUAN Xi-Long, LIU Jin-Zhao, CAI Hai-Rong, CHEN Shi-Yi, GUO Tao, WANG Hui. OsWRI3, identified based on QTL mapping, regulates seed shattering in rice [J]. Acta Agronomica Sinica, 2025, 51(7): 1712-1724.
[6] WANG Fen, WU Dong-Li, ZHANG Quan-Jun. Response of phenological phase stages of single-cropping rice to climate change in Hubei province, China [J]. Acta Agronomica Sinica, 2025, 51(7): 1934-1948.
[7] HU Meng, SHA Dan, ZHANG Sheng-Rui, GU Yong-Zhe, ZHANG Shi-Bi, LI Jing, SUN Jun-Ming, QIU Li-Juan, LI Bin. QTL mapping and candidate gene screening for branch number in soybean [J]. Acta Agronomica Sinica, 2025, 51(7): 1747-1756.
[8] SHAO Shun-Wei, CHEN Zhuo, LAN Zhen-Dong, CAI Xing-Kui, ZOU Hua-Fen, LI Chen-Xi, TANG Jing-Hua, ZHU Xi, ZHANG Yu, DONG Jian-Ke, JIN Hui, SONG Bo-Tao. QTL mapping of tuber eye depth based on BSA-seq technique [J]. Acta Agronomica Sinica, 2025, 51(7): 1725-1735.
[9] GUO Dong-Cai, LYU Tao, CAI Yong-Sheng, MAI WU-LU-DA·AI He-Mai-Ti, CHEN Quan-Jia, QU Yan-Ying, ZHENG Kai. Meta-analysis of QTL and identification of candidate genes for fiber quality in cotton [J]. Acta Agronomica Sinica, 2025, 51(6): 1445-1466.
[10] LEI Song-Han, FAN Jun-Yang, CHE Yan-Yi, DAI Yong-Dong, ZHENG Yu-Meng, TIAN Wei-Jiang, SANG Xian-Chun, WANG Xiao-Wen. Identification of an adaxially-curled-leaf mutant acl3 and function analysis of the regulated gene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2025, 51(6): 1467-1479.
[11] LI Fu-Yuan, YANG Yi, MA Ji-Qiong, XU Ming-Hui, LIN Liang-Bin, SUN Yi-Ding. Cloning, hormone-induced expression analysis, and interaction protein screening of OsPUB4 in rice [J]. Acta Agronomica Sinica, 2025, 51(6): 1690-1700.
[12] LI Zi-Xiang, HUANG Rong, WANG Zhi-Chao, LI Hong-Yan, TAN Jun-Xing, CHENG Yu, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamate acid on lodging resistance of direct seeding rice [J]. Acta Agronomica Sinica, 2025, 51(6): 1654-1664.
[13] ZHANG Jin-Ze, ZHOU Qing-Guo, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, LONG Xu, YAN Zhong-Bin, TIAN En-Tang. QTL mapping and candidate gene analysis of glucosinolate content in various tissues of Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(5): 1166-1177.
[14] WANG Meng-Ning, XIE Ke-Ran, GAO Ti, WANG Fei, REN Xiao-Jian, XIONG Dong-Liang, HUANG Jian-Liang, PENG Shao-Bing, CUI Ke-Hui. Effect of high temperature during the panicle initiation and heading stages on grain shape and filling and its relationship with grain weight in rice [J]. Acta Agronomica Sinica, 2025, 51(5): 1347-1362.
[15] SHENG Qian-Nan, FANG Ya-Ting, ZHAO Jian, DU Si-Yao, HU Xing-Zhen, YU Qiu-hua, ZHU Jun, REN Tao, LU Jian-Wei. Effects of different nutrient management practices on oilseed rape yield and their response to freezing stress between upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2025, 51(5): 1286-1298.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!