Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Development of functional markers of rice stripe disease resistance gene STV11 based on HRM technique

WANG Chan1,2,WU Ying-Ying1,2,LI Wen-Qi2,LI Xia2,WANG Fang-Quan2,ZHOU Tong3,YANG Jie1,2,*   

  1. 1 Jiangsu University, Zhenjiang 212013, Jiangsu, China; 2 Institute of Grain Crops, Jiangsu Academy of Agricultural Sciences / Key Laboratory of Germplasm lnnovation in Downstrem of Huaihe River (Nanjing), Nanjing 210014, Jiangsu, China; 3 Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
  • Received:2024-11-27 Revised:2025-06-01 Accepted:2025-06-01 Published:2025-06-13
  • Supported by:
    This study was supported by the Zhongshan Biological Breeding Laboratory Project (BM2022008-03).

Abstract:

Rice stripe disease, transmitted by the brown planthopper, poses a major threat to rice (Oryza sativa L.) production, particularly affecting japonica rice (Oryza sativa subsp. japonica). The causal agent is the rice stripe virus (RSV), which causes significant yield losses. To accelerate the breeding of rice varieties resistant to rice stripe disease, this study aimed to develop functional markers for the rapid and accurate identification of RSV resistance genes, thereby improving the efficiency of rice germplasm enhancement. STV11, a resistance gene identified in the indica variety Kasalath, was targeted. Based on a six-base deletion polymorphism in the Kasalath-type resistance allele STV11KAS (LOC_Os11g30910), sequence data from NCBI were analyzed. A PCR-based functional molecular marker, stvHRM-3, was designed according to nucleotide differences at positions 773–779 between resistant and susceptible varieties. PCR amplification and sequencing of the target fragments were conducted to validate the marker’s specificity. Through HRM-PCR detection and sequencing analysis, stvHRM-3 was confirmed as a functional marker for the STV11 gene. Using this marker, the STV11 genotypes of 520 japonica rice accessions—including materials from the Jiangsu Provincial Late Japonica Rice Regional Trials, late-maturing medium japonica preliminary tests, breeding intermediates, and selected varieties—were analyzed. Results showed that 217 accessions carried the resistance allele, 294 carried the susceptibility allele, and nine exhibited a heterozygous genotype. Accessions identified as resistant through marker analysis consistently exhibited high or moderate levels of resistance. The stvHRM-3 marker, developed using HRM-PCR technology, enables rapid, high-throughput genotyping of STV11 alleles and provides an effective tool for the early screening of RSV resistance. This marker holds great potential for application in marker-assisted selection and breeding of stripe virus–resistant rice varieties.

Key words: rice, rice stripe disease, STV11, functional marker, HRM-PCR technology

[1] Lu G, Yao M, Zhou Y J, Tao X R. Purification of rice stripe virus. Bio Protoc, 2020, 10: e3565.

[2] Cho W K, Lian S, Kim S M, Park S H, Kim K H. Current insights into research on rice stripe virus. Plant Pathol J, 2013, 29: 223–233.

[3] Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P. Navigating complexity to breed disease-resistant crops. Nat Rev Genet, 2018, 19: 21–33.

[4] Utomo H S, Linscombe S D. Current patents and future development underlying marker-assisted breeding in major grain crops. Recent Pat DNA Gene Seq, 2009, 3: 53–62.

[5] Liu X, Du Y R, Li X H, Li X L, Yang W Q, Wang Y. Breeding of a target genotype variety based on identified chalkiness marker-QTL associations in rice (Oryza sativa L.). Genet Mol Res, 2015, 14: 12894–12902.

[6] Xu Y, Zhang H Y, Kang G B, Wang Y J, Chen H. Studies of molecular marker-assisted-selection for resistance to Fusarium wilt in watermelon (Citrullus lanatus) breeding. Acta Genet Sin, 2000, 27: 151–157.

[7] Hayashi K, Kawahara Y, Maeda H, Hayano-Saito Y. Comparative analyses of Stvb-allelic genes reveal japonica specificity of rice stripe resistance in Oryza sativa. Breed Sci, 2022, 72: 333–342.

[8] Wang Q, Liu Y Q, He J, Zheng X M, Hu J L, Liu Y L, Dai H M, Zhang Y X, Wang B X, Wu W X, et al. STV11 encodes a sulphotransferase and confers durable resistance to rice stripe virus. Nat Commun, 2014, 5: 4768.

[9] Hayano-Saito Y, Saito K, Fujii K, Touyama T, Tsuji T, Sugiura N, Izawa T, Iwasaki M. SCAR marker for selection of the rice stripe resistance gene Stvb-i. Breed Res, 2000, 2: 67–72.

[10] 陈峰, 周继华, 张士永, 严长杰, 朱文银, 孙亚伟, 袁守江, 杨连群. 水稻抗条纹叶枯病基因Stv-bi的分子标记辅助选择. 作物学报, 2009, 35: 597–601.
Chen F, Zhou J H, Zhang S Y, Yan C J, Zhu W Y, Sun Y W, Yuan S J, Yang L Q. Marker-assisted selection for Stv-bi gene controlling resistance to rice stripe disease. Acta Agron Sin, 2009, 35: 597–601 (in Chinese with English abstract).

[11] 毛艇, 李旭, 张战, 付立东, 李振宇. 抗条纹叶枯病基因STV11的功能性分子标记建立及粳型抗源筛选. 中国水稻科学, 2016, 30: 661–667.
Mao T, Li X, Zhang Z, Fu L D, Li Z Y. Development of functional marker for rice stripe virus resistant gene STV11 and resistant germplasm selection in japonica rice. Chin J Rice Sci, 2016, 30: 661–667 (in Chinese with English abstract).

[12] Kiani S J, Donyavi T, Bokharaei-Salim F. Detection of CCR5 delta-32 mutation using high-resolution melting curve analysis: challenges and facts. Curr HIV Res, 2024, 22: 368–373.

[13] Muneeswaran K, Branavan U, de Silva V A, Dayabandara M, Hanwella R, Chandrasekharan N V. Genotyping SNPs and Indels: a method to improve the scope and sensitivity of High-Resolution melt (HRM) analysis based applications. Clin Chim Acta, 2024, 562: 119897.

[14] Jeong J, Yang Y S, Song M S, Won H Y, Han A T, Kim S. High-Resolution Melting (HRM) analysis of DNA methylation using semiconductor chip-based digital PCR. Genes Genomics, 2024, 46: 909–915.

[15] Hou Y L, You C G. High-throughput and rapid melting curve analysis. Clin Lab, 2018, 64: 1113–1119.

[16] Vologodskii A, Frank-Kamenetskii M D. DNA melting and energetics of the double helix. Phys Life Rev, 2018, 25: 1–21.

[17] Wittwer C T, Hemmert A C, Kent J O, Rejali N A. DNA melting analysis. Mol Aspects Med, 2024, 97: 101268.

[18] Waters D L E, Shapter F M. The polymerase chain reaction (PCR): general methods. Methods Mol Biol, 2014, 1099: 65–75.

[19] Lorenz T C. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J Vis Exp, 2012: e3998.

[20] Mafi S, Dehghani M, Khalvati B, Abidi H, Ghorbani M, Jalali P, Whichelo R, Salehi Z, Markowska A, Reyes A, et al. Targeting PERK and GRP78 in colorectal cancer: genetic insights and novel therapeutic approaches. Eur J Pharmacol, 2024, 982: 176899.

[21] Pryor R J, Wittwer C T. Real-time polymerase chain reaction and melting curve analysis. Methods Mol Biol, 2006, 336: 19–32.

[22] 房文文, 王海凤, 郭涛, 薛芳, 姜艳芳, 张焕霞, 张士永. 基于PCR-HRM的水稻氮高效基因NRT1.1B功能标记开发及应用. 山东农业科学, 2023, 55(8): 21–26.
Fang W W, Wang H F, Guo T, Xue F, Jiang Y F, Zhang H X. Development and application of functional marker of rice nitrogen-efficient gene NRT1.1B based on PCR-HRM. Shandong Agric Sci, 2023, 55(8): 21–26 (in Chinese with English abstract).

[23] 兰莹, 杜琳琳, 林峰, 李晨羊, 周益军, 宋锦花, 许明, 周彤. 2015–2021年江苏省粳稻新品种()对水稻条纹叶枯病的抗性评价. 江苏农业科学, 2023, 51(24): 100–104.
Lan Y, Du Y Y, Lin F, Li C Y, Zhou Y J, Song J H, Xu M, Zhou T. Evaluation of resistance of new japonica rice varieties (lines) to rice stripe leaf blight in Jiangsu province from 2015 to 2021. Jiangsu Agric Sci, 2023, 51(24): 100–104 (in Chinese).

[24] 王才林, 张亚东, 朱镇, 姚姝, 赵庆勇, 陈涛, 周丽慧, 赵凌. 优良食味粳稻新品种南粳9108的选育与利用. 江苏农业科学, 2013, 41(9): 86–88.
Wang C L, Zhang Y D, Zhu Z, Yao S, Zhao Q Y, Chen T, Zhou L H, Zhao L. Breeding and utilization of new japonica rice variety Nanjing 9108 with good food taste. Jiangsu Agric Sci, 2013, 41(9): 86–88 (in Chinese).

[25] 王蓉. 南粳5055品种特性及高产栽培技术. 农业工程技术, 2020, 40(32): 61–62.
Wang R. Variety characteristics and high-yield cultivation techniques of Nanjing 5055. Agric Eng Technol, 2020, 40(32): 61–62 (in Chinese).

[26] 杨艳, 严贞, 杨居银. 淮稻5号品种特性及绿色栽培技术. 农业开发与装备, 2021, (1): 205–206.
Yang Y, Yan Z, Yang J Y. Variety characteristics and green cultivation techniques of Huaidao 5. Agric Dev Equip, 2021, (1): 205–206 (in Chinese).

[27] 赵凌, 朱镇, 陈涛, 赵庆勇, 赵春芳, 张亚东, 王才林. 水稻优良品种南粳46及其衍生品种特性分析. 植物遗传资源学报, 2023, 24: 648–660.
Zhao L, Zhu Z, Chen T, Zhao Q Y, Zhao C F, Zhang Y D, Wang C L. Analysis on characteristics of rice variety Nanjing 46 and its derived varieties. J Plant Genet Resour, 2023, 24: 648–660 (in Chinese with English abstract).

[28] 姜守全, 张世辉, 方杰, 李智谋, 郭君, 管锋, 姚仁祥, 伍振平. 优质晚稻农香39的特征特性及富硒高产栽培技术. 农业科技通讯, 2022, (12): 200–202.
Jiang S Q, Zhang S H, Fang J, Li Z M, Guo J, Guan F, Yao R X, Wu Z P. Characteristics of high-quality late rice Nongxiang 39 and its Se-enriched and high-yield cultivation techniques. Bull Agric Sci Technol, 2022, (12): 200–202 (in Chinese).

[29] 沈宏扬. 高产稳产优质杂交稻新组合两优粤禾丝苗. 中国种业, 2024, (9): 149–150.
Shen H Y, You B, He Y, Wang Q. Liangyouyuehe silk seedling, a new hybrid rice combination with high and stable yield and good quality. China Seed Ind, 2024, (9): 149–150 (in Chinese).

[30] Deng R L, Tao M, Xing H, Yang X L, Liu C, Liao K F, Qi L. Automatic diagnosis of rice diseases using deep learning. Front Plant Sci, 2021, 12: 701038.

[1] LEI Song-Han, FAN Jun-Yang, CHE Yan-Yi, DAI Yong-Dong, ZHENG Yu-Meng, TIAN Wei-Jiang, SANG Xian-Chun, WANG Xiao-Wen. Identification of an adaxially-curled-leaf mutant acl3 and function analysis of the regulated gene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2025, 51(6): 1467-1479.
[2] LI Fu-Yuan, YANG Yi, MA Ji-Qiong, XU Ming-Hui, LIN Liang-Bin, SUN Yi-Ding. Cloning, hormone-induced expression analysis, and interaction protein screening of OsPUB4 in rice [J]. Acta Agronomica Sinica, 2025, 51(6): 1690-1700.
[3] LI Zi-Xiang, HUANG Rong, WANG Zhi-Chao, LI Hong-Yan, TAN Jun-Xing, CHENG Yu, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamate acid on lodging resistance of direct seeding rice [J]. Acta Agronomica Sinica, 2025, 51(6): 1654-1664.
[4] WANG Meng-Ning, XIE Ke-Ran, GAO Ti, WANG Fei, REN Xiao-Jian, XIONG Dong-Liang, HUANG Jian-Liang, PENG Shao-Bing, CUI Ke-Hui. Effect of high temperature during the panicle initiation and heading stages on grain shape and filling and its relationship with grain weight in rice [J]. Acta Agronomica Sinica, 2025, 51(5): 1347-1362.
[5] SHENG Qian-Nan, FANG Ya-Ting, ZHAO Jian, DU Si-Yao, HU Xing-Zhen, YU Qiu-hua, ZHU Jun, REN Tao, LU Jian-Wei. Effects of different nutrient management practices on oilseed rape yield and their response to freezing stress between upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2025, 51(5): 1286-1298.
[6] WENG Wen-An, XING Zhi-Peng, HU Qun, WEI Hai-Yan, LIAO Ping, ZHU Hai-Bin, QU Ji-Wei, LI Xiu-Li, LIU Gui-Yun, GAO Hui, ZHANG Hong-Cheng. Study on yield formation characteristics, energy and economic benefits of unmanned dry direct-seeding rice [J]. Acta Agronomica Sinica, 2025, 51(5): 1363-1377.
[7] ZHU Jian-Ping, LI Wen-Qi, XU Yang, WANG Fang-Quan, LI Xia, JIANG Yan-Jie, FAN Fang-Jun, TAO Ya-Jun, CHEN Zhi-Hui, WU Ying-Ying, YANG Jie. Phenotypic analysis and gene mapping of a floury endosperm mutant we2 in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 1110-1117.
[8] XIAO Zheng-Wu, ZHANG Ke-Qian, CAO Fang-Bo, CHEN Jia-Na, ZHENG Hua-Bin, WANG Wei-Qin, HUANG Min. Relationships between cooking and eating quality of brown rice noodles and starch component contents and pasting properties of brown rice grains [J]. Acta Agronomica Sinica, 2025, 51(4): 1102-1109.
[9] PAN Ju-Zhong, WEI Ping, ZHU De-Ping, SHAO Sheng-Xue, CHEN Shan-Shan, WEI Ya-Qian, GAO Wei-Wei. Cloning and functional analysis of OsERF104 transcription factor in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 900-913.
[10] HOU Tian-Yu, DU Xiao-Jing, ZHAO Zhi-Qiang, REYIM Anwar, YIDAYETULA Abula, BUHALIQIEMU Abulizi, YUAN Jie, ZHANG Yan-Hong, WANG Feng-Bin. Evaluation of cold tolerance of japonica rice varieties at germination stage and construction of identification system [J]. Acta Agronomica Sinica, 2025, 51(3): 812-822.
[11] YANG Cui-Hua, LI Shi-Hao, YI Xu-Xu, ZHENG Fei-Xiong, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamic acid on rice yield, quality, and nutrient uptake [J]. Acta Agronomica Sinica, 2025, 51(3): 785-796.
[12] XIONG Qiang-Qiang, SUN Chang-Hui, GU Wen-Fei, LU Yan-Yao, ZHOU Nian-Bing, GUO Bao-Wei, LIU Guo-Dong, WEI Hai-Yan, ZHU Jin-Yan, ZHANG Hong-Cheng. Comprehensive evaluation of 70 japonica glutinous rice varieties (lines) based on growth period, yield, and quality [J]. Acta Agronomica Sinica, 2025, 51(3): 728-743.
[13] SU Chang, MAN Fu-Yuan, WANG Jing-Bo, FENG Jing, JIANG Si-Xu, ZHAO Ming-Hui. Response of osalr3 mutant to exogenous organic acids and plant growth regulators under aluminum stress [J]. Acta Agronomica Sinica, 2025, 51(3): 676-686.
[14] LIU Jian-Guo, CHEN Dong-Dong, CHEN Yu-Yu, YI Qin-Qin, LI Qing, XU Zheng-Jin, QIAN Qian, SHEN Lan. Effects of different alleles and natural variations of OsMKK4, a member of the rice MKKs family gene, on grains [J]. Acta Agronomica Sinica, 2025, 51(3): 598-608.
[15] ZHANG Zheng-Kang, SU Yan-Hong, RUAN Sun-Mei, ZHANG Min, ZHANG Pan, ZHANG Hui, ZENG Qian-Chun, LUO Qiong. Cloning and functional study of OgXa13 in Oryza meyeriana [J]. Acta Agronomica Sinica, 2025, 51(2): 334-346.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!