Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (5): 1248-1260.doi: 10.3724/SP.J.1006.2025.44113
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
YIN Cong-Cong1(), LI Rui-Qi2, YUE Pei-Yao2, LI Chen1, NIU Jing-Ping3, ZHAO Jin-Zhong1, DU Wei-Jun2, YUE Ai-Qin2,*(
)
[1] | Usovsky M, Chen P Y, Li D X, Wang A M, Shi A N, Zheng C M, Shakiba E, Lee D, Canella Vieira C, Lee Y C, et al. Decades of genetic research on Soybean mosaic virus resistance in soybean. Viruses, 2022, 14: 1122. |
[2] |
Yang Y Q, Lin J, Zheng G J, Zhang M C, Zhi H J. Recombinant soybean mosaic virus is prevalent in Chinese soybean fields. Arch Virol, 2014, 159: 1793-1796.
doi: 10.1007/s00705-014-1980-z pmid: 24445813 |
[3] | Anderson N R, Irizarry M D, Bloomingdale C A, Smith D L, Bradley C A, Delaney D P, Kleczewski N M, Sikora E J, Mueller D S, Wise K A. Effect of soybean vein necrosis on yield and seed quality of soybean. Can J Plant Pathol, 2017, 39: 334-341. |
[4] | 郭东全, 智海剑, 王延伟, 盖钧镒, 周新安, 杨崇良, 李凯, 李海朝. 黄淮中北部大豆花叶病毒株系的鉴定与分布. 中国油料作物学报, 2005, 27(4): 64-68. |
Guo D Q, Zhi H J, Wang Y W, Gai J Y, Zhou X A, Yang C L, Li K, Li H C. Identification and distribution of soybean mosaic virus strains in Middle and Northern Huang Huai Region of China. Chin J Oil Crop Sci, 2005, 27(4): 64-68 (in Chinese with English abstract). | |
[5] | Li D, Chen P, Alloatti J, Shi A, Chen Y F. Identification of new alleles for resistance to Soybean mosaic virus in soybean. Crop Sci, 2010, 50: 649-655. |
[6] | 车志军. 大豆对大豆花叶病毒SC7抗性的关联分析及候选基因Rsc7-1的功能研究. 南京农业大学博士学位论文, 江苏南京, 2019. |
Che Z J. Genome-wide Association Study Reveals Novel Loci for Soybean Mosaic Virus SC7 Resistance and Functional Study of RSC7-1. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2019 (in Chinese with English abstract). | |
[7] |
向文扬, 杨永庆, 任秋燕, 晋彤彤, 王丽群, 王大刚, 智海剑. 大豆抗SC3候选基因的克隆及分析. 作物学报, 2019, 45: 1822-1831.
doi: 10.3724/SP.J.1006.2019.94054 |
Xiang W Y, Yang Y Q, Ren Q Y, Jin T T, Wang L Q, Wang D G, Zhi H J. Cloning and analysis of candidate gene resistant to SC3 in soybean. Acta Agron Sin, 2019, 45: 1822-1831 (in Chinese with English abstract). | |
[8] | Hoffmeisterová H, Kratochvílová K, Čeřovská N, Slavíková L, Dušek J, Muller K, Fousek J, Plchová H, Navrátil O, Kundu J K, et al. One-enzyme RTX-PCR for the detection of RNA viruses from multiple virus Genera and crop plants. Viruses, 2022, 14: 298. |
[9] | Nabi S U, Mir J I, Yasmin S, Din A, Raja W H, Madhu G S, Parveen S, Mansoor S, Chung Y S, Sharma O C, et al. Tissue and time optimization for real-time detection of apple mosaic virus and apple necrotic mosaic virus associated with mosaic disease of apple (Malus domestica). Viruses, 2023, 15: 795. |
[10] | Chen H M, Zhou Y, Wang X F, Zhou C Y, Yang X Y, Li Z A. Detection of Citrus yellow vein clearing virus by quantitative real-time RT-PCR. Hortic Plant J, 2016, 2: 188-192. |
[11] |
Mahmoud S A, Ganesan S, Ibrahim E, Thakre B, Teddy J G, Raheja P, Zaher W A. Evaluation of six different rapid methods for nucleic acid detection of SARS-COV-2 virus. J Med Virol, 2021, 93: 5538-5543.
doi: 10.1002/jmv.27090 pmid: 34002401 |
[12] |
Deng J Q, Tian F, Liu C, Liu Y, Zhao S, Fu T, Sun J S, Tan W H. Rapid one-step detection of viral particles using an aptamer-based thermophoretic assay. J Am Chem Soc, 2021, 143: 7261-7266.
doi: 10.1021/jacs.1c02929 pmid: 33944569 |
[13] | Ning B, Yu T, Zhang S W, Huang Z, Tian D, Lin Z, Niu A, Golden N, Hensley K, Threeton B, et al. A smartphone-read ultrasensitive and quantitative saliva test for COVID-19. Sci Adv, 2021, 7: eabe3703. |
[14] | Thangsunan P, Temisak S, Jaimalai T, Rios-Solis L, Suree N. Sensitive detection of chicken meat in commercial processed food products based on one-step colourimetric loop-mediated isothermal amplification. Food Anal Meth, 2022, 15: 1341-1355. |
[15] |
McGinnis E, Chan G, Hudoba M, Markin T, Yakimec J, Roland K. Malaria screening using front-line loop-mediated isothermal amplification: fourteen-month experience in a nonendemic regional hub-and-spoke laboratory setting. Am J Clin Pathol, 2021, 155: 690-697.
doi: 10.1093/ajcp/aqaa173 pmid: 33283225 |
[16] |
Zhao Y X, Chen F, Li Q, Wang L H, Fan C H. Isothermal amplification of nucleic acids. Chem Rev, 2015, 115: 12491-12545.
doi: 10.1021/acs.chemrev.5b00428 pmid: 26551336 |
[17] |
Tomita N, Mori Y, Kanda H, Notomi T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc, 2008, 3: 877-882.
doi: 10.1038/nprot.2008.57 pmid: 18451795 |
[18] | Dao Thi V L, Herbst K, Boerner K, Meurer M, Kremer L P, Kirrmaier D, Freistaedter A, Papagiannidis D, Galmozzi C, Stanifer M L, et al. A colorimetric RT-LAMP assay and LAMP- sequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci Transl Med, 2020, 12: eabc7075. |
[19] | Selva Sharma A, Lee N Y. Advancements in visualizing loop-mediated isothermal amplification (LAMP) reactions: a comprehensive review of colorimetric and fluorometric detection strategies for precise diagnosis of infectious diseases. Coord Chem Rev, 2024, 509: 215769. |
[20] |
Zhang M, Wang H H, Wang H, Wang F F, Li Z P. CRISPR/ Cas12a-assisted ligation-initiated loop-mediated isothermal amplification (CAL-LAMP) for highly specific detection of microRNAs. Anal Chem, 2021, 93: 7942-7948.
doi: 10.1021/acs.analchem.1c00686 pmid: 34038095 |
[21] | Wu W J, Yin C C, Yue A Q, Niu J P, Du W J, Liu D B, Zhao J Z. Rapid and visual detection of soybean mosaic virus SC7 with a loop-mediated isothermal amplification strategy. Sens Actuat B Chem, 2022, 373: 132733. |
[22] | Li C, Guo S X, Sun M, Niu J P, Yin C C, Du W J, Zhao J Z, Liu D B, Yue A Q. A colorimetric RT-LAMP assay for rapid detection of Soybean mosaic virus SC15. ACS Omega, 2024, 9: 29765-29775. |
[23] | Liao W J, Long D, Huang Q S, Wei D D, Liu X B, Wan L G, Feng Y L, Zhang W, Liu Y. Rapid detection to differentiate hypervirulent Klebsiella pneumoniae (hvKp) from classical K. pneumoniae by identifying peg-344 with loop-mediated isothermal amplication (lamp). Front Microbiol, 2020, 11: 1189. |
[24] |
Gonçalves D da S, Cassimiro A P A, de Oliveira C D, Rodrigues N B, Moreira L A. Wolbachia detection in insects through LAMP: loop mediated isothermal amplification. Parasit Vectors, 2014, 7: 228.
doi: 10.1186/1756-3305-7-228 pmid: 24885509 |
[25] | Feng H, Chen J J, Yu Z, Li Z, Ye W W, Wang Y C, Zheng X B. A loop-mediated isothermal amplification assay can rapidly diagnose soybean root-rot and damping-off diseases caused by Pythium spinosum. Austr Plant Pathol, 2019, 48: 553-562. |
[26] | Li Y M, Fan P H, Zhou S S, Zhang L. Loop-mediated isothermal amplification (LAMP): a novel rapid detection platform for pathogens. Microb Pathog, 2017, 107: 54-61. |
[27] |
Biswas G, Sakai M. Loop-mediated isothermal amplification (LAMP) assays for detection and identification of aquaculture pathogens: current state and perspectives. Appl Microbiol Biotechnol, 2014, 98: 2881-2895.
doi: 10.1007/s00253-014-5531-z pmid: 24477385 |
[28] | Zhang Y L, Ouyang G F, Chen X H, Guo F, Mao R. Development of closed dumbbell mediated isothermal amplification assay for rapid and on-site detection of Vibrio parahaemolyticus. Microchem J, 2024, 207: 111892. |
[29] | Gui Z, Cai H, Wu L, Miao Q, Yu J F, Cai T, Mao R. Visual closed dumbbell-mediated isothermal amplification (CDA) for on-site detection of Rickettsia raoultii. PLoS Negl Trop Dis, 2022, 16: e0010747. |
[30] | Zhang Y L, Chen X H, Ouyang G F, Wang J P, Sun Y C, Lai Y L, Zhang P, Guo F, Yang S J, Mao R. Development and evaluation of rapid and simple detection of Klebsiella pneumoniae using closed dumbbell-mediated isothermal amplification diagnostic assay. Front Microbiol, 2024, 15: 1435010. |
[31] |
Mao R, Qi L F, Li J J, Sun M, Wang Z, Du Y G. Competitive annealing mediated isothermal amplification of nucleic acids. Analyst, 2018, 143: 639-642.
doi: 10.1039/c7an01569k pmid: 29318228 |
[32] | Zhang S Y, Lin S H, Zhu L J, Du Z H, Li J L, Wang L, Xu W T. Novel indicator and stem-loop-primer assisted isothermal amplification for the visual semi-quantitative detection of Toxoplasma gondii. Sens Actuat B Chem, 2022, 372: 132544. |
[33] | Guan X Y, Guo J C, Shen P, Yang L T, Zhang D B. Visual and rapid detection of two genetically modified soybean events using loop-mediated isothermal amplification method. Food Anal Meth, 2010, 3: 313-320. |
[34] | 高岭巍. 大豆花叶病毒病及其防治. 农业科技通讯, 2013, (3): 218-219. |
Gao L W. Soybean mosaic virus disease and its control. Bull Agric Sci Technol, 2013, (3): 218-219 (in Chinese). | |
[35] | 杨晓军. 大豆花叶病毒病防治技术. 现代农村科技, 2021, (10): 34. |
Yang X J. Control techniques of soybean mosaic virus. Mod Agric Sci Technol, 2021, (10): 34 (in Chinese). | |
[36] |
阳小凤, 杨永庆, 郑桂杰, 智海剑, 李小红. 大豆对大豆花叶病毒株系SC6和SC17抗病基因的精细定位. 作物学报, 2013, 39: 216-221.
doi: 10.3724/SP.J.1006.2013.00216 |
Yang X F, Yang Y Q, Zheng G J, Zhi H J, Li X X. Fine Mapping of Resistance Genes to SMV Strains SC6 and SC17 in Soybean. Acta Agron Sin, 2013, 39: 216-221 (in Chinese with English abstract). | |
[37] | 张军. 豫南大豆花叶病毒病的发生及防治. 种业导刊, 2012, (4): 17-18. |
Zhang J. Occurrence and control of soybean mosaic virus disease in southern Henan province. J Seed Ind Guide, 2012, (4): 17-18 (in Chinese). | |
[38] | Seo J K, Ohshima K, Lee H G, Son M, Choi H S, Lee S H, Sohn S H, Kim K H. Molecular variability and genetic structure of the population of soybean mosaic virus based on the analysis of complete genome sequences. Virology, 2009, 393: 91-103. |
[39] | Zong T X, Yin J L, Jin T T, Wang L Q, Luo M X, Li K, Zhi H J. A DnaJ protein that interacts with soybean mosaic virus coat protein serves as a key susceptibility factor for viral infection. Virus Res, 2020, 281: 197870. |
[40] | Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes, 2002, 16: 223-229. |
[1] | Wen-Yang XIANG,Yong-Qing YANG,Qiu-Yan REN,Tong-Tong JIN,Li-Qun WANG,Da-Gang WANG,Hai-Jian ZHI. Cloning and analysis of candidate gene resistant to SC3 in soybean [J]. Acta Agronomica Sinica, 2019, 45(12): 1822-1831. |
[2] | YANG Xiang-Dong,NIU Lu,ZHANG Wei,YANG Jing,DU Qian,XING Guo-Jie,GUO Dong-Quan,LI Qi-Yun,DONG Ying-Shan. RNAi-mediated SMV-P3 Silencing Increases Soybean Resistance to Soybean Mosaic Virus [J]. Acta Agron Sin, 2016, 42(11): 1647-1655. |
[3] | ZHANG Jie-Qiong,LI Hong-Yan,HU Xiao-Nan,SHAN Zhi-Hui,TANG Gui-Xiang. Agrobacterium tumefaciens Mediated Transformation of RNAi CP Gene into Soybean (Glycine max L.) [J]. Acta Agron Sin, 2013, 39(09): 1594-1601. |
[4] | YANG Xiao-Feng,YANG Yong-Qing,ZHENG Gui-Jie,ZHI Hai-Jian,LI Xiao-Hong. Fine Mapping of Resistance Genes to SMV Strains SC6 and SC17 in Soybean [J]. Acta Agron Sin, 2013, 39(02): 216-221. |
[5] | WANG Da-Gang, MA Ying, LIU Ning, ZHENG Gui-Jie, YANG Zhong-Lu, YANG Yong-Qiang, ZHI Hai-Jian. Inheritance of Resistances to Soybean Mosaic Virus Strains SC4 and SC8 in Soybean [J]. Acta Agron Sin, 2012, 38(02): 202-209. |
[6] | ZHAN Yong;YU De-Yue; CHEN Shou-Yi;GAI Jun-Yi. Inheritance and Gene Mapping of Resistance to SMV Strain SC-7 in Soybean [J]. Acta Agron Sin, 2006, 32(06): 936-938. |
[7] | LIU Chun-Yan; CHEN Qing-Shan; XIN Da-Wei; QIU Hong-Mei; SHAN Da-Peng. ESTs Analysis of Resistance to Soybean Mosaic Virus (SMV) in Soybean at Primary Infected Stage [J]. Acta Agron Sin, 2005, 31(11): 1394-1399. |
[8] | ZHI Hai-Jian;GAI Jun-Yi;HE Xiao-Hong. Inheritance of Resistance in Infection and Resistance in Development to Soybean Mosaic Virus in Soybeans [J]. Acta Agron Sin, 2005, 31(10): 1260-1264. |
[9] | Zhang Yudong; Gai Junyi; Ma Yuhua. Inheritance of Resistance to Two Local Soybean Mosaic Virus Strains S_A and S_C in Soybeans [J]. Acta Agron Sin, 1989, 15(03): 213-220. |
|