Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (5): 1261-1276.doi: 10.3724/SP.J.1006.2025.41064

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic analysis of high yield and yield stability characteristics of new wheat variety Xinong 877

MENG Xiang-Yu1(), DIAO Deng-Chao1, LIU Ya-Rui1, LI Yun-Li1, SUN Yu-Chen1, WU Wei1, ZHAO Wen1, WANG Yu1, WU Jian-Hui1,3, LI Chun-Lian1,3, ZENG Qing-Dong2,3, HAN De-Jun1,3, ZHENG Wei-Jun1,3,*()   

  1. 1College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
    2College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
    3National Key Laboratory of Crop Stress Resistance and Efficient Production, Yangling 712100, Shaanxi, China
  • Received:2024-10-01 Accepted:2024-12-20 Online:2025-05-12 Published:2024-12-27
  • Contact: *E-mail: zhengweijun@nwafu.edu.cn
  • Supported by:
    Shaanxi Provincial Department of Science and Technology Key Industry Innovation Chain Project(2024NC-ZDCYL-01-02);Major Science and Technology Innovation 2030 Project Fund(2023ZD04026)

Abstract:

Xinong 877 is a newly developed wheat variety bred by Northwest A&F University, characterized by wide adaptability, high yield, and yield stability. This study aims to elucidate the genetic basis of Xinong 877’s high yield, adaptability, and comprehensive resistance, thereby providing theoretical foundations and methodological guidance for the breeding of new wheat varieties. Field experiments were conducted to analyze the grain filling characteristics and photosynthetic traits of Xinong 877, along with several high-yielding wheat varieties from the Huanghuai wheat region. A combined approach utilizing a 16K SNP background chip and a 0.1K SNP functional chip was employed to thoroughly dissect the genetic foundation of Xinong 877 and identify the genetic effects of key chromosomal regions. The results showed that, Xinong 877 exhibited superior grain filling characteristics, including an extended grain filling duration, optimal allocation across various grain filling stages, and a high grain filling rate. Additionally, its flag leaves possessed elevated chlorophyll content and enhanced photosynthetic capacity. In regional trials, the average thousand-grain weight was 48.60 g, and in field trials, it reached 50.05 g, both surpassing the control variety Zhoumai 36 and demonstrating good stability. These traits establish a foundation for realizing high yield potential. In multi-location regional trials, Xinong 877 achieved an average stability coefficient of 89.15, significantly higher than that of Zhoumai 36. Regarding genetic composition, Xinong 805a, as the female parent, contributed 80.23 percent of the genetic makeup to Xinong 877, the highest among the three parent lines. Additionally, Xinong 877 incorporated multiple superior genes/QTLs from its parents, including stripe rust resistance loci QYrqin.nwafu-6BS, QYrsn.nwafu-1BL, QYrxn.nwafu-1BL, Yr29, and Yr78; fusarium head blight resistance loci QFhb.caas-5AL and QFhb.hbaas-5AL; leaf rust resistance loci Lr13 and Lr68; as well as yield-related loci such as grain weight genes TaT6P and TaGS5-A1, and grain size gene QGl-4A. Xinong 877 exhibits significant yield potential and wide adaptability in field production. There are notable differences in the genetic contributions from the parent lines, with Xinong 805a providing the highest genetic contribution. The aggregation of multiple key genes/QTLs related to important traits in Xinong 877 offers valuable genetic resources and theoretical support for the development of high-yield, broadly adaptable wheat varieties in the Huanghuai wheat region.

Key words: Xinong 877, high yield potential, wide adaptability, disease resistance, wheat SNP Array, genetic structure

Table 1

Experimental yield and composition of three factors for the irrigated land group in Huanghuai south section"

类型
Trial type
年度
Year
品种
Cultivar
穗数
SN
(spikes hm-2)
穗粒数KNS 千粒重TKW
(g)
排名
Rank
产量
GY
(kg hm-2)
排名
Rank
± CK
(%)
变异系数
CV
(%)
区域
试验
RYT
2020-2021 西农877
Xinong 877
643.5 36.2 49.4 6(26) 8461.5 4(26) 4.24 6.99
周麦36号
Zhoumai 36 (CK)
552.0 38.4 46.3 15(26) 8116.5 24(26) 6.00
2021-2022 西农877
Xinong 877
597.0 35.8 49.7 1(26) 9549.0 9(26) 5.51 8.06
周麦36号
Zhoumai 36 (CK)
570.0 37.7 47.6 11(26) 9049.5 25(26) 7.31
生产
试验
RPT
2022-2023 西农877
Xinong 877
582.0 36.5 46.7 1(8) 8348.3 3(8) 5.91 6.15
周麦36号
Zhoumai 36 (CK)
574.5 37.3 44.0 3(8) 7881.0 8(8) 5.79
平均
Average
西农877
Xinong 877
607.5 36.17 48.60 8786.3 5.22 7.07
周麦36号
Zhoumai 36 (CK)
565.5 37.80 45.97 8349.0 6.37

Table 2

Performance of grain yield traits indifferent high-yielding wheat varieties"

品种
Cultivar
穗数
SN (spike hm-2)
穗粒数
KNS
千粒重
TKW (g)
产量
GY (kg hm-2)
济麦22 Jimai 22 41.01 bc 41.08 c 42.93 b 601.43 b
西农877 Xinong 877 37.75 bc 45.83 ab 50.05 a 684.00 a
郑麦136 Zhengmai 136 42.73 ab 42.58 bc 43.55 b 683.33 a
周麦36号 Zhoumai 36 36.63 c 48.08 a 42.76 b 669.40 a
平均值Average 39.53 44.39 44.82 659.54
标准差 SD 2.45 2.74 3.03 34.05
变异系数CV (%) 6.20 6.17 6.76 5.16

Table 3

Correlation between yield components and overall yield in Xinong 877"

因子Factor 穗数Spike number 穗粒数Grain number 千粒重Thousand-grain weight 产量Yield
穗数 Spike number 1
穗粒数 Grain number -0.749 1
千粒重 Thousand kernel weight -0.211 0.604 1
产量 Yield -0.732 0.845* 0.813* 1

Table 4

Path coefficients of yield components influencing the yield of Xinong 877"

因子
Factor
直接作用
Direct action
间接作用 Indirect action
F1→Yield F2→Yield F3→Yield
穗数Spike number (F1) -0.618 0.036 -0.150
穗粒数Grain number (F2) -0.048 0.463 0.430
千粒重Thousand kernel weight (F3) 0.712 0.130 -0.029

Table 5

Estimation of Logistic equation parameters for kernel filling process in different high-yielding varieties"

品种 Cultivar A B K R2
济麦22 Jimai 22 46.20 ± 0.19 91.97 ± 3.45 0.20 ± 0.002 1.0000
西农877 Xinong 877 55.13 ± 0.27 73.03 ± 2.35 0.18 ± 0.002 1.0000
郑麦136 Zhengmai 136 47.35 ± 0.32 94.34 ± 6.19 0.21 ± 0.004 0.9999
周麦36号Zhoumai 36 46.18 ± 1.01 124.11 ± 30.63 0.22 ± 0.013 0.9986

Fig. 1

Impact factors of kernel weight gain and filling rate curves in different high-yielding varieties"

Table 6

Kernel filling parameter characteristics of different high-yielding varieties"

品种
Cultivar
最大灌浆速率时间
Tmax (d)
最大灌浆速率
Vmax (g 1000-grain-1 d-1)
灌浆持续期
T (d)
平均灌浆速率
Vmean (g 1000-grain-1 d-1)
济麦22 Jimai 22 22.61 2.31 38.50 1.15
西农877 Xinong 877 23.84 2.48 41.49 1.28
郑麦136 Zhengmai136 21.65 2.49 36.79 1.24
周麦36号Zhoumai 36 21.91 2.54 36.32 1.22

Table 7

Comparative analysis of kernel filling characteristics at various stages in different high-yielding varieties"

品种
Cultivar
灌浆时间
Days (d)
灌浆速率
Grain filling rate
(g 1000-grain-1 d-1)
干物质量
Dry weight
(g 1000-grain-1)
渐增期
T1
快增期
T2
缓增期
T3
渐增期
V1
快增期
V2
缓增期
V3
渐增期Y1 快增期
Y2
缓增期Y3
济麦22 Jimai 22 16.02 13.17 9.31 0.61 2.03 0.85 9.76 26.71 7.88
西农877 Xinong 877 16.52 14.63 10.34 0.71 2.18 0.91 11.65 31.83 9.44
郑麦136 Zhengmai 136 15.38 12.54 8.87 0.65 2.18 0.92 10.01 27.33 8.12
周麦36号Zhoumai36 15.93 11.97 8.42 0.61 2.23 0.94 9.76 26.66 7.91

Fig. 2

Correlation heatmap of grain filling parameters and TKW in different high-yield varieties"

Fig. 3

Dynamic changes in SPAD and Pn of flag leaves post-anthesis in different high-yield varieties ** means significant difference at the 0.01 probability level."

Table 8

Variance analysis of grain yield and yield formation factors by sowing date and rate on wheat Xinong 877 (F-value)"

变异来源
Source of variation
产量
Grain yield (kg hm-2)
容重
Test weight (g L-1)
千粒重
1000-grain weight (g)
播期 Sowing date 69.28** 0.82ns 56.72**
播量 Sowing amount 0.05ns 1.82ns 10.52**
播期×播量 Sowing data × sowing amount 1.35ns 2.03ns 7.63**

Fig. 4

Genome analysis result of 16K SNP array"

Table 9

Genetic contribution from Xinong 805a, Xinong 889, and Xinong 979 with SNPs to Xinong 877 on 21 chromosomes"

染色体
Chr.
总差异
位点数
No. of total
differential loci
西农805a Xinong 805a 西农889 Xinong 889 西农979 Xinong 979 变异贡献率
Mutation contribution rate
(%)
差异位点数
No. of
differential
loci
相对遗传率
Contribution rate
(%)
差异位点数
No. of
differential
loci
相对遗传率
Contri
bution rate
(%)
差异位点数
No. of
differential
loci
相对遗传率
Contribution rate
(%)
1A 157 50 31.85 73 46.50 33 21.02 32.48
2A 506 68 13.44 116 22.92 462 91.30 0.79
3A 279 172 61.65 146 52.33 81 29.03 4.66
4A 231 197 85.28 72 31.17 127 54.98 0.87
5A 317 137 43.22 105 33.12 98 30.91 31.23
6A 366 125 34.15 275 75.14 90 24.59 0.27
7A 275 263 95.64 141 51.27 80 29.09 1.09
A基因组
A genome
2131 1012 47.49 928 43.55 971 45.57 8.12
1B 186 112 60.22 108 58.06 62 33.33 1.08
2B 411 196 47.69 227 55.23 180 43.80 9.98
3B 507 160 31.56 425 83.83 302 59.57 1.18
4B 205 115 56.10 130 63.41 33 16.10 7.32
5B 257 242 94.16 48 18.68 69 26.85 3.89
6B 516 235 45.54 233 45.16 397 76.94 0.58
7B 320 226 70.63 272 85.00 48 15.00 2.50
B基因组
B genome
2402 1286 53.54 1443 60.07 1091 45.42 3.54
1D 50 23 46.00 28 56.00 18 36.00 0
2D 108 90 83.33 27 25.00 52 48.15 11.11
3D 76 71 93.42 20 26.32 42 55.26 0
4D 39 26 66.67 17 43.59 22 56.41 5.13
5D 72 58 80.56 36 50.00 32 44.44 0
6D 63 62 98.41 19 30.16 37 58.73 0
7D 138 107 77.54 39 28.26 65 47.10 5.80
D基因组
D genome
546 437 80.04 186 34.07 268 49.08 4.03
全基因组
Whole genome
5079 2735 53.85 2557 50.34 2330 45.88 5.51

Fig. 5

Genotypic maps of 21 chromosomes from Xinong 877 based on 16K SNP array"

Table 10

Result of Xinong 877 and its parents by 0.1K SNP array"

性状
Trait
基因/QTL
Gene/QTL
染色体
Chromosome
西农805A
Xinong 805A
西农889
Xinong 889
西农979
Xinong 979
西农877
Xinong 877
赤霉病抗性
Scab resistance
Qfhb.caas-3BL 3B - + - -
QFhb.hbaas-5AS 5A - + + -
QFhb.hbaas-5AL 5A + + - +
QFhb.caas-5AL 5A + + + +
条锈病抗性
Stripe rust
resistance
QYr.nwafu-3BS 3B + - + +
QYr.nwafu-4BL 4B + - - -
QYrhm.nwafu-2BC 2B - - - +
QYrqin.nwafu-2AL 2A + - + -
QYrqin.nwafu-6BS 6B + + + +
QYrsn.nwafu-1BL 1B + - + +
QYrsn.nwafu-2AS 2A - + - -
QYrsn.nwafu-6BS 6B + - + -
QYrxn.nwafu-1BL 1B + + - +
Yr29 1B + + + +
Yr30 3B + - - -
Yr75 7A - + - -
Yr78 6B - + - +
叶锈病抗性
Leaf rust resistance
Lr13 2B - + - +
Lr68 7B + + + +
Lr80 2D - - - -
Pm5e 7B + + + -
PmV 6B - - - -
穗发芽抗性
Spike sprouts
TaMFT-A1 3A + + + +
TaSdr-A1 2A - - - -
籽粒大小 Grain size QGl-4A 4A + - + +
粒重 Grain weight TaGS5-A1 3A + + + +
TaT6P 6A - + - +
株高 Plant height Rht-D1 4D + + + +
RHT-8 2D + - + -
Rht24_AP2 6A + - + -
品质 Quality Glu-B3h 1B - + + +
TaLCYE-B1 3B - + - +
[1] 杨丽芝, 潘春霞, 邵珊璐, 陶晨悦, 王威, 应叶青. 多效唑和干旱胁迫对毛竹实生苗活力、光合能力及非结构性碳水化合物的影响. 生态学报, 2018, 38: 2082-2091.
Yang L Z, Pan C X, Shao S L, Tao C Y, Wang W, Ying Y Q. Effects of PP333and drought stress on the activity, photosynthetic characteristics, and non-structural carbohydrates of phyllostachys edulis seedlings. Acta Ecol Sin, 2018, 38: 2082-2091 (in Chinese with English abstract).
[2] 邓霞. 小麦灌浆期SPAD值对产量的影响研究. 新疆师范大学硕士学位论文, 新疆乌鲁木齐, 2020.
Deng X. Study on the Effect of SPAD Value on Wheat Yield at Grain Filling Stage. MS Thesis of Xinjiang Normal University, Urumqi, Xinjiang, China, 2020 (in Chinese with English abstract).
[3] Baker L A, Habershon S. Photosynthesis, pigment-protein complexes and electronic energy transport: simple models for complicated processes. Sci Prog, 2017, 100: 313-330.
doi: 10.3184/003685017X14967574639964 pmid: 28779762
[4] Coast O, Posch B C, Bramley H, Gaju O, Richards R A, Lu M Q, Ruan Y L, Trethowan R, Atkin O K. Acclimation of leaf photosynthesis and respiration to warming in field-grown wheat. Plant Cell Environ, 2021, 44: 2331-2346.
[5] Liu H X, Si X M, Wang Z Y, Cao L J, Gao L F, Zhou X L, Wang W X, Wang K, Jiao C Z, Zhuang, et al. TaTPP-7A positively feedback regulates grain filling and wheat grain yield through T6P-SnRK1 signalling pathway and sugar-ABA interaction. Plant Biotechnol J, 2023, 21: 1159-1175.
doi: 10.1111/pbi.14025 pmid: 36752567
[6] 丁位华, 冯素伟, 王丹, 孙海丽, 李婷婷, 茹振钢. 不同穗型小麦籽粒灌浆、干物质积累与转运特性及其与产量的关系. 河南农业科学, 2018, 47(6): 13-17.
Ding W H, Feng S W, Wang D, Sun H L, Li T T, Ru Z G. Grain filling, dry matter accumulation and transport characteristics of different spike types of wheat and their relationship with yield. J Henan Agric Sci, 2018, 47(6): 13-17 (in Chinese with English abstract).
[7] 甄士聪, 赵永涛, 袁谦, 张中州, 望俊森. 小麦新品种漯麦76籽粒灌浆特性及产量分析. 浙江农业科学, 2024, 65: 885-888.
doi: 10.16178/j.issn.0528-9017.20230542
Zhen S C, Zhao Y T, Yuan Q, Zhang Z Z, Wang J S. Grain filling characteristics and yield analysis of wheat new variety Luomai 76. J Zhejiang Agric Sci, 2024, 65: 885-888 (in Chinese with English abstract).
doi: 10.16178/j.issn.0528-9017.20230542
[8] Przulj N, Mladenov N. Inheritance of grain filling duration in spring wheat. Plant Breed, 1999, 118: 517-521.
[9] Sun C W, Dong Z D, Zhao L, Ren Y, Zhang N, Chen F. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol J, 2020, 18: 1354-1360.
doi: 10.1111/pbi.13361 pmid: 32065714
[10] 姚琦馥, 陈黄鑫, 周界光, 马瑞莹, 邓亮, 谭陈芯雨, 宋靖涵, 吕季娟, 马建. 基于16K SNP芯片的小麦株高QTL鉴定及其遗传分析. 中国农业科学, 2023, 56: 2237-2248.
doi: 10.3864/j.issn.0578-1752.2023.12.001
Yao Q F, Chen H X, Zhou J G, Ma R Y, Deng L, Tan C X Y, Song J H, Lyu J J, Ma J. QTL identification and genetic analysis of plant height in wheat based on 16K SNP array. Sci Agric Sin, 2023, 56: 2237-2248 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.12.001
[11] 王矗, 殷岩, 王昊, 李诗慧, 赵春华, 秦冉, 孙晗, 吴永振, 慕岩君, 孔军杰, 等. 小麦品种烟农999高产遗传基础解析. 植物遗传资源学报, 2023, 24: 732-743.
Wang C, Yin Y, Wang H, Li S H, Zhao C H, Qin R, Sun H, Wu Y Z, Mu Y J, Kong J J, et al. Unlocking the genetic basis of high-yield wheat variety Yannong 999. J Plant Genet Resour, 2023, 24: 732-743 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.20221213004
[12] 陈晓杰, 范家霖, 程仲杰, 杨科, 杨保安, 张福彦, 王嘉欢, 张建伟, 王浩. 高产优质中强筋小麦新品种豫丰11的遗传构成及其特异区段解析. 种子, 2023, 42: 14-18.
Chen X J, Fan J L, Cheng Z J, Yang K, Yang B A, Zhang F Y, Wang J H, Zhang J W, Wang H. Analysis on genetic component and specific regions of new wheat variety Yufeng 11 with high yield and good quality medium gluten. Seed, 2023, 42: 14-18 (in Chinese with English abstract).
[13] Li R, Zhang C Y, Guo J P, Liu Y C. Maize grain filling characteristics in China: response to meteorological factors. Heliyon, 2024, 10: e30791.
[14] Yin S Y, Li P C, Xu Y, Liu J, Yang T T, Wei J, Xu S H, Yu J J, Fang H M, Xue L, et al. Genetic and genomic analysis of the seed-filling process in maize based on a logistic model. Heredity, 2020, 124: 122-134.
doi: 10.1038/s41437-019-0251-x pmid: 31358987
[15] Liu S J, Xiang M J, Wang X T, Li J Q, Cheng X R, Li H Z, Singh R P, Bhavani S, Huang S, Zheng W J, et al. Development and application of the GenoBaits® Wheat SNP 16K array to accelerate wheat genetic research and breeding. Plant Commun, 2024, 6: 101138.
[16] Van B R. GGT 2.0: versatile software for visualization and analysis of genetic data. J Hered, 2008, 99: 232-236.
doi: 10.1093/jhered/esm109 pmid: 18222930
[17] Xiang M J, Liu S J, Wang X T, Zhang M M, Yan W Y, Wu J H, Wang Q L, Li C L, Zheng W J, He Y L, et al. Development of breeder chip for gene detection and molecular-assisted selection by target sequencing in wheat. Mol Breed, 2023, 43: 13.
[18] 王贺正, 徐国伟, 吴金芝, 张均, 陈明灿, 付国占, 李友军. 不同氮素水平对豫麦49-198籽粒灌浆及淀粉合成相关酶活性的调控效应. 植物营养与肥料学报, 2013, 19: 288-296.
Wang H Z, Xu G W, Wu J Z, Zhang J, Chen M C, Fu G Z, Li Y J. Regulating effect of nitrogen fertilization on grain filling and activities of enzymes involved in starch synthesis of Yumai 49-198. Plant Nutr Fert Sci, 2013, 19: 288-296 (in Chinese with English abstract).
[19] 苗永杰, 阎俊, 赵德辉, 田宇兵, 闫俊良, 夏先春, 张勇, 何中虎. 黄淮麦区小麦主栽品种粒重与籽粒灌浆特性的关系. 作物学报, 2018, 44: 260-267.
doi: 10.3724/SP.J.1006.2018.00260
Miao Y J, Yan J, Zhao D H, Tian Y B, Yan J L, Xia X C, Zhang Y, He Z H. Relationship between grain filling parameters and grain weight in leading wheat cultivars in the yellow and Huai Rivers valley. Acta Agron Sin, 2018, 44: 260-267 (in Chinese with English abstract).
[20] 信志红, 郭建平, 谭凯炎, 张利华, 刘凯文, 杨荣光, 张颖, 孙义. 不同品性冬小麦籽粒灌浆特性研究. 气象与环境科学, 2019, 42(1): 18-25.
Xin Z H, Guo J P, Tan K Y, Zhang L H, Liu K W, Yang R G, Zhang Y, Sun Y. Study on grain filling characteristics of different quality winter wheat. Meteor Environ Sci, 2019, 42(1): 18-25 (in Chinese with English abstract).
[21] 姜思彤, 苏娜, 傅兆麟. 小麦旗叶叶绿素含量的时空差异性分析. 黑龙江农业科学, 2018, (10): 22-26.
Jiang S T, Su N, Fu Z L. Temporal and spatial difference analysis of chlorophyll content in wheat flag leaf. Heilongjiang Agric Sci, 2018, (10): 22-26 (in Chinese with English abstract).
[22] 卓武燕, 张正茂, 刘苗苗, 刘玉秀, 刘芳亮, 孙茹. 不同类型小麦光合特性及农艺性状的差异. 西北农业学报, 2016, 25: 538-546.
Zhuo W Y, Zhang Z M, Liu M M, Liu Y X, Liu F L, Sun R. Difference of photosynthetic characteristics and agronomic traits in different types of wheat. Acta Agric Boreali-Occident Sin, 2016, 25: 538-546 (in Chinese with English abstract).
[23] 谭彩霞, 封超年, 郭文善, 朱新开, 李春燕, 彭永欣. 不同品质类型小麦旗叶光合特性及其与产量的相关性研究. 扬州大学学报(农业与生命科学版), 2019, 40(6): 30-34.
Tan C X, Feng C N, Guo W S, Zhu X K, Li C Y, Peng Y X. Photosynthetic physiological characteristics in flag leaf of different quality types of wheat and its correlation with yield. J Yangzhou Univ Agric (Life Sci Edn), 2019, 40(6): 30-34 (in Chinese with English abstract).
[24] 盖红梅, 李玉刚, 王瑞英, 李振清, 王圣健, 高峻岭, 张学勇. 鲁麦14对山东新选育小麦品种的遗传贡献. 作物学报, 2012, 38: 954-961.
doi: 10.3724/SP.J.1006.2012.00954
Gai H M, Li Y G, Wang R Y, Li Z Q, Wang S J, Gao J L, Zhang X Y. Genetic contribution of Lumai 14 to novel wheat varieties developed in Shandong province. Acta Agron Sin, 2012, 38: 954-961 (in chinese with English abstract).
[25] 杨子博, 王安邦, 冷苏凤, 顾正中, 周羊梅. 小麦新品种淮麦33的遗传构成分析. 中国农业科学, 2018, 51: 3237-3248.
doi: 10.3864/j.issn.0578-1752.2018.17.001
Yang Z B, Wang A B, Leng S F, Gu Z Z, Zhou Y M. Genetic analysis of the novel high-yielding wheat cultivar Huaimai 33. Sci Agric Sin, 2018, 51: 3237-3248 (in Chinese with English abstract).
[26] 吴胜男, 李英壮, 王娜, 刘录祥, 谢彦周, 王成社. 小麦新品种陕农33的遗传构成分析. 麦类作物学报, 2021, 41: 134-139.
Wu S N, Li Y Z, Wang N, Liu L X, Xie Y Z, Wang C S. Dissection of genetic components in the new high-yielding wheat cultivar Shaannong 33. J Triticeae Crops, 2021, 41: 134-139 (in Chinese with English abstract).
[27] Zeng Q D, Wu J H, Liu S J, Chen X M, Yuan F P, Su P P, Wang Q L, Huang S, Mu J M, Han D J, et al. Genome-wide mapping for stripe rust resistance loci in common wheat cultivar Qinnong 142. Plant Dis, 2019, 103: 439-447.
doi: 10.1094/PDIS-05-18-0846-RE pmid: 30648483
[28] Huang S, Zhang Y B, Ren H, Zhang X, Yu R, Liu S J, Zeng Q D, Wang Q L, Yuan F P, Singh R P, et al. High density mapping of wheat stripe rust resistance gene QYrXN3517-1BL using QTL mapping, BSE-Seq and candidate gene analysis. Theor Appl Genet, 2023, 136: 39.
doi: 10.1007/s00122-023-04282-5 pmid: 36897402
[29] Huang S, Zhang Y B, Ren H, Li X, Zhang X, Zhang Z Y, Zhang C L, Liu S J, Wang X T, Zeng Q D, et al. Epistatic interaction effect between chromosome 1BL (Yr29) and a novel locus on 2AL facilitating resistance to stripe rust in Chinese wheat Changwu 357-9. Theor Appl Genet, 2022, 135: 2501-2513.
[30] Zhu Z W, Xu X T, Fu L P, Wang F J, Dong Y C, Fang Z W, Wang W X, Chen Y P, Gao C B, He Z H, et al. Molecular mapping of quantitative trait loci for Fusarium head blight resistance in a doubled haploid population of Chinese bread wheat. Plant Dis, 2021, 105: 1339-1345.
[31] Wang S S, Zhang X F, Chen F, Cui D Q. A single-nucleotide polymorphism of TaGS5 gene revealed its association with kernel weight in Chinese bread wheat. Front Plant Sci, 2015, 6: 1166.
doi: 10.3389/fpls.2015.01166 pmid: 26779195
[32] Cao P, Liang X N, Zhao H, Feng B, Xu E J, Wang L M, Hu Y X. Identification of the quantitative trait loci controlling spike- related traits in hexaploid wheat (Triticum aestivum L.). Planta, 2019, 250: 1967-1981.
[1] LUAN Yi, BAI Yan, LU Shi, LI Lei-Xin, WANG De-Qiang, GAO Ting-Ting, SHI Jie, YANG Hong-Ming, LU Ming. Multi-disease resistance evaluation of spring maize varieties for the national regional test in Northeast and North China during 2016-2020 [J]. Acta Agronomica Sinica, 2023, 49(4): 1122-1131.
[2] SUN Bing-Rui, PAN Da-Jian, LI Chen, JIANG Li-Qun, ZHANG Jing, LYU Shu-Wei, LIU Qing, MAO Xing-Xue, CHEN Wen-Feng, FAN Zhi-Lan. Genetic structure and evolutionary relationship for cultivated rice resources from Guangdong province based on SLAF tag sequencing [J]. Acta Agronomica Sinica, 2022, 48(10): 2483-2493.
[3] FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539.
[4] ZHANG Huan, LUO Huai-Yong, LI Wei-Tao, GUO Jian-Bin, CHEN Wei-Gang, ZHOU Xiao-Jing, HUANG Li, LIU Nian, YAN Li-Ying, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Genome-wide identification of peanut resistance genes and their response to Ralstonia solanacearum infection [J]. Acta Agronomica Sinica, 2021, 47(12): 2314-2323.
[5] Zhu LI, Li-Ping XU, Ya-Chun SU, Qi-Bin WU, Wei CHENG, Ting-Ting SUN, Shi-Wu GAO. Analysis of Brown Rust Resistance Inheritance Based on Field Phenotypes and Detection of Bru1 Gene in Sugarcane [J]. Acta Agronomica Sinica, 2018, 44(02): 306-312.
[6] MA Yan-Song, LIU Zhang-Xiong, WEN Zi-Xiang, WEI Shu-Hong, YANG Chun-Ming, WANG Hui-Cai6, YANG Chun-Yan, LU Wei-Guo, XU Ran, ZHANG Wan-Hai, WU Ji-An, HU Guo-Hua, LUAN Xiao-Yan, FU . Effect of Population Structure on Prediction Accuracy of Soybean 100-Seed Weight by Genomic Selection MA Yan-Song1,2,13, LIU Zhang-Xiong1, WEN Zi-Xiang3, WEI Shu-Hong4, YANG Chun-Ming5, WANG Hui-Cai6, YANG [J]. Acta Agron Sin, 2018, 44(01): 43-52.
[7] WANG Rui-Yun,JI Xu,LU Ping,LIU Min-Xuan,XU Yue,WANG Lun,WANG Hai-Gang,QIAO Zhi-Jun. Analysis of Genetic Diversity in Common Millet (Panicum miliaceum) Using Fluorescent SSR in China [J]. Acta Agron Sin, 2017, 43(04): 530-548.
[8] QIAO Lin-Yi,CHANG Jian-Zhong,GUO Hui-Juan,GAO Jian-Gang,ZHENG Jun,CHANG Zhi-Jian. Genome-Wide Analysis of TaNBS Resistance Genes and Development of Chromosome 2AL-specific NBS-SSR Markers in Wheat [J]. Acta Agron Sin, 2016, 42(06): 795-802.
[9] LI Zhi-Xin,WANG Mei-Huan,XU Chao-Fei,LI Hua-Jun,LI Xiao-Fang. Correlation between the Fifth Internode Length and Heading Acceleration Percentage in Rice [J]. Acta Agron Sin, 2014, 40(10): 1872-1876.
[10] LI Ji-Fa,DENG Zhi-Ying,SUN Fu-Lai,GUAN Xi-Zhen,WANG Yan-Xun,TIAN Ji-Chun. Resistance Genes of Wheat Variety Shannong 20 Identified by Diagnostic Molecular Markers [J]. Acta Agron Sin, 2014, 40(04): 611-621.
[11] LI Hong-Jie,WANG Xiao-Ming,CHEN Huai-Gu,LI Wei,LIU Dong-Tao,ZHANG Hui-Yun. Reaction of Wheat-Thinopyrum Progenies and Wheat Germplasm to Sharp Eyespot [J]. Acta Agron Sin, 2013, 39(06): 999-1012.
[12] HONG Xue-Juan, HOU Jin-Feng, DING Hui, LI Yong-Chun, GAI Jun-Yi, GENG Han. Comparison of Two Genetic Maps of Soybean constructed by RIL Populations Derived from Combinations of Peking×7605 under Two Ecological Sites [J]. Acta Agron Sin, 2012, 38(04): 614-623.
[13] ZHANG Yuan-Yuan, SHU Ai-Ping, ZHANG Li-Na, CAO Gui-Lan, HAN Long-Zhi. Analysis of Genetic Structure for Indica Rice Landraces from Different Provinces in China [J]. Acta Agron Sin, 2011, 37(12): 2173-2178.
[14] LI Hong-Jie, WANG Xiao-Ming, SONG Feng-Jing, WU Cui-Beng, WU Xiao-Fei, ZHANG Ning, ZHOU Yang, ZHANG Hua-Yong. Response to Powdery Mildew and Detection of Resistance Genes in Wheat Cultivars from China [J]. Acta Agron Sin, 2011, 37(06): 943-954.
[15] ZHAO Kai-Jun, LI Yan-Qiang, WANG Chun-Lian, GAO Ying. Recent Findings in Plant Innate Immunity and Possible Impacts on Crop Disease-resistance Breeding [J]. Acta Agron Sin, 2011, 37(06): 935-942.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!