Acta Agron Sin ›› 2018, Vol. 44 ›› Issue (01): 43-52.doi: 10.3724/SP.J.1006.2018.00043
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
MA Yan-Song1,2,13, LIU Zhang-Xiong1, WEN Zi-Xiang3, WEI Shu-Hong4, YANG Chun-Ming5, WANG Hui-Cai6,YANG Chun-Yan7, LU Wei-Guo8, XU Ran9, ZHANG Wan-Hai10, WU Ji-An11, HU Guo-Hua12, LUAN Xiao-Yan13, FU Ya-Shu14, GUO Tai15, WANG Shu-Ming5, HAN Tian-Fu1, ZHANG Meng-Chen7, ZHANG Lei16, YUAN Bao-Jun17, GUO Yong1, Jochen C. REIF18, JIANG Yong18, LI Wen-Bin2, WANG De-Chun3,QIU Li-Juan1,*
[1]盖钧镒, 熊冬金, 赵团结. 中国大豆育成品种系谱与种质基础(1923–2005). 北京: 中国农业出版社, 2015. pp 11–12 Gai J Y, Xiong D J, Zhao T J. The Pedigrees and Germplasm Bases of Soybean Cultivars Released in China (1923–2005). Beijing: China Agriculture Press, 2015. pp 11–12 (in Chinese) [2]徐东河, 李东艳, 程舜华. 大豆百粒重与抗旱性及产量的关系. 中国油料, 1991, (3): 64–66 Xu D H, Li D Y, Cheng S H. Relationship between 100-seed weight and anti-draught and yield of soybean. Oil Crops China, 1991, (3): 64–66 (in Chinese) [3]王占廷, 栾素荣, 程舜华. 大豆百粒重与产量的相关分析. 大豆通报, 1997, (2): 9 Wang Z T, Luan S R, Cheng S H. Relationship analysis between 100-seed weight and yield in soybean. Soybean Bull, 1997, (2): 9 (in Chinese) [4]汪霞, 徐宇, 李广军, 李河南, 艮文全, 章元明. 大豆百粒重QTL定位. 作物学报, 2010, 36: 1674–1682 Wang X, Xu Y, Li G J, Li H N, Gen W Q, Zhang Y M. Mapping quantitative trait loci for 100-seed weight in soybean(Glycine max L. Merr.). Acta Agron Sin, 2010, 36: 1674–1682 (in Chinese with English abstract) [5]陈庆山, 蒋洪蔚, 孙殿君, 刘春燕, 辛大伟, 曾庆力, 马占洲, 胡国华. 利用野生大豆染色体片段代换系定位百粒重QTL. 大豆科学, 2014, 33: 154–160 Chen Q S, Jiang H W, Sun D J, Liu C Y, Xin D W, Zeng Q L, Ma Z Z, Hu G H. QTL Mapping for 100-seed weight using wild soybean chromosome segment substitution lines. Soybean Sci, 2014, 33: 154–160 (in Chinese with English abstract) [6]张英虎, 孟珊, 贺剑波, 王宇峰, 邢光南, 赵团结, 盖钧镒. 大豆重组自交系群体NJRSXG百粒重超亲分离的遗传解析. 中国农业科学, 2015, 48: 4408–4416 Zhang Y H, Meng S, He J B, Wang Y F, Xing G N, Zhao T J, Gai J Y. The genetic constitution of transgressive segregation of the 100-seed weight in a recombinant inbred line population NJRSXG of soybean. Sci Agric Sin, 2015, 48: 4408–4416 (in Chinese with English abstract) [7]齐照明, 孙亚男, 陈立君, 郭强, 刘春燕, 胡国华, 陈庆山. 基于Meta分析的大豆百粒重的QTLs定位. 中国农业科学, 2009, 42: 3795–3803 Qi Z M, Sun Y N, Chen L J, Guo Q, Liu C Y, Hu G H, Chen Q S. Meta-analysis of 100-seed weight QTL in soybean. Sci Agric Sin, 2009, 42: 3795–3803 (in Chinese with English abstract) [8]Goddard M E, Hayes B J. Genomic selection. J Anim Breed Genet, 2007, 124: 323–330 [9]Jannink J L, Lorenz A J, Iwata H. Genomic selection in plant breeding: from theory to practice. Brief Funct Genom, 2010, 9: 166–177 [10]Nakaya A, Isobe S N. Will genomic selection be a practical method for plant breeding? Annals of Botany Bot, 2012, 110: 1303–1316 [11]Meuwissen T H E, Hayes B J, Goddar M E. Prediction of total genetic value using genome-wide dense marker maps. Geneics, 2001,157: 1819–1829 [12]Zhao Y, Gowda M, Liu W, Wurschum T, Maurer H P, Longin F H, Ranc N, Reif J C. Accuracy of genomic selection in European maize elite breeding populations. Theor Appl Genet, 2012, 124: 769–776 [13]Zhao Y, Gowda M, Longin F H, Wurschum T, Ranc N, Reif J C. Impact of selective genotyping in the training population on accuracy and bias of genomic selection. Theor Appl Genet, 2012, 125: 707–713 [14]Crossa J, Perez P, Hickey J, Burgueno J, Ornella L, Rojas J C, Zhang X, Dreisigacker S, Babu R, Li Y, Mathews K. Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity, 2014,112: 48–60 [15]Sprdel J, Begum H, Akdemir D, Virk P, Collard B, Redona E, Atlin G, Jannink J L, McCouch S R. Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet, 2015, 11: e1004982–e1004982 [16]Shu Y J, Yu D S, Wang D, Bai X, Zhu Y M, Guo C H. Genomic selection of seed weight based on low-density SCAR markers in soybean. Genet Mol Res, 2013, 12: 2178–2188 [17]Bao Y, Vuong T, Meinhardt C, Tiffin P, Denny R, Chen S Y, Nguyen H T, Orf J H, Young N D. Potential of association mapping and genomic selection to explore PI88788 derived soybean cyst nematode resistance. Plant Genome, 2014, 7: 1–13 [18]Dawson J C, Endelman J B, Heslot N, Crossa J, Poland J, Dreisigacker S, Manes Y, Sorrells M E, Jannink J L. The use of unbalanced historical data for genomic selection in an international wheat breeding program. Field Crops Res, 2013,154: 12–22 [19]Zhong S Q, Dekkers J C, Fernando R L, Jannink J L. Factors affecting accuracy from genomic selection in population derived from multiple inbred lines: a barley case study. Genetics, 2009, 182: 355–364 [20]Wang Y, Mette M F, Miedaner T, Gottwald M, Wilde P, Rif J C, Zhao Y S. The accuracy of prediction of genomic selection in elite hybrid rye populations surpasses the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations and test years. BMC Genom, 2014, 15: 556–567 [21]Reif J C, Zhao Y S, Wurschum T, Gowda M, Hahn V. Genomic selection of sunflower hybrid performance. Plant Breed, 2013, 132: 107–114 [22]Denis M, Bouvet J M. Efficiency of genomic selection with models including dominance effect in the context of Eucalyptus breeding. Tree Genet & Genom, 2013, 9: 37–51 [23]Desta Z A, Ortiz R. Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci, 2014, 19: 592–601 [24]Heslot N, Jannink J L, Sorrells M E. Perspective for genomic selection applications and research in plants. Crop Sci, 2015, 55: 1–12 [25]Schmutz J, Cannon S B, Schlueter J, Ma J X, Mitros T, Nelson W, Hyten D L, Song Q J, Thelen J J, Cheng J L, Xu D, Hellsten U, May G D, Yu Y S, Sakurai T, Umezawa T S, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S Q, Goodstein D, Barry K, Griggs M F, Abernathy B, Du J C, Tian Z X, Zhu L C, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X C, Shinozaki K, Nguyen H T, Wing R A, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker R C, Jachson S A. Genome sequence of the palaeoployploid soybean. Nature, 2010, 463: 178–183 [26]Lam H M, Xu X, Liu X, Chen W B, Yang G H, Wong F L, Li M W, He W M, Qin N, Wang B, Li J, Jian M, Wang J, Shao G H, Wang J, Sun S S, Zhang G Y. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet, 2010,42: 1053–1059 [27]Li Y H, Zhou G Y, Ma J X, Jiang W K, Jin L G, Zhang Z H, Guo Y, Zhong J B, Sui Y, Zheng L T, Zhang S S, Zou Q Y, Shi X H, Li Y F, Zhang W K, Hu Y Y, Kong G Y, Hong H L, Tan B, Song J, Liu Z X, Wang Y S, Ruan H, Yeung C K, Liu J, Wang H L, Zhang L J, Guan R X, Wang K J, Li W B, Chen S Y, Chang R Z, Jiang Z, Jackson S A, Li R Q, Qiu L J. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol, 2014, 32: 1045–1052 [28]Zhou Z K, Jiang Y, Wang Z, Gou Z H, Lyu J, Li W Y, Yu Y J, Shu L Q, Zhao Y J, Ma Y M, Fang C, Shen Y T, Liu T F, Li C C, Li Q, Wu M, Wang M, Wu Y S, Dong Y, Wan W T, Wang X, Ding Z L, Gao Y D, Xiang H, Zhu B G, Lee S H, Wang W, Tian Z X. Re-sequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol, 2015, 33: 408–414 [29]Song Q J, Hyten D L, Jia G F, Quigley C V, Fickus E W, Nelson R L, Cregan P B. Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One, 2013, 8: e54985 [30]邱丽娟, 常汝镇, 刘章雄, 关荣霞, 李英慧. 大豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 18–24 Qiu L J, Chang R Z, Liu Z X, Guan R X, Li Y H. Descriptors and Data Standard for Soybean (Glycine spp.). Beijing: China Agriculture Press, 2015. pp 18–24 (in Chinese) [31]Fehr W R. Genetic contributions to yield gains of five major crop plants; proceedings of a symposium sponsored by Division C-1 of the Crop Science Society of America, in Atlanta, Georgia - ResearchGate, 1984. [32]Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611–2620 [33]Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633–2635 [34]文自翔, 赵团结, 郑永战, 刘顺湖, 王春娥, 王芳, 盖钧镒. 中国栽培和野生大豆农艺品质性状与SSR标记的关联分析: I. 群体结构及关联标记. 作物学报, 2008, 34: 1169–1178 Wen Z X, Zhao T J, Zheng Y Z, Liu S H, Wang C E, Wang F, Gai J Y. Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in china: I. Population structure and associated markers. Acta Agron Sin, 2008, 34: 1169–1178 (in Chinese with English abstract) [35]张军, 赵团结, 盖钧镒. 中国东北大豆育成品种遗传多样性和群体遗传结构分析. 作物学报, 2008, 34: 1529–1536 Zhang J, Zhao T J, Gai J Y. Genetic diversity and genetic structure of soybean cultivar population released in Northeast China. Acta Agron Sin, 2008, 34: 1529–1536 (in Chinese with English abstract) [36]范虎, 赵团结, 丁艳来, 邢光南, 盖钧镒. 中国野生大豆群体特征和地理分化的遗传分析. 中国农业科学, 2012, 45: 414–425 Fan H, Zhao T J, Ding Y L, Xing G N, Gai J Y. Genetic analysis of the characteristics and geographic differentiation of Chinese wild soybean population. Sci Agric Sin, 2012, 45: 414–425 (in Chinese with English abstract) [37]宋喜娥, 李英慧, 常汝镇, 郭平毅, 邱丽娟. 中国栽培大豆(Glycine max(L.) Merr.) 微核心种质的群体结构与遗传多样性. 中国农业科学, 2010, 43: 2209–2219 Song X E, Li Y H, Chang R Z, Guo P Y, Qiu L J. Population sturcture and genetic diversity of mini core collection of cultivated soybean (Glycine max(L.) Merr.) in China. Sci Agric Sin, 2010, 43: 2209–2219 (in Chinese with English abstract) [38]张军, 赵团结, 盖钧镒. 中国大豆育成品种群体遗传结构分化和亚群特异性分析. 中国农业科学, 2009, 42: 1901–1910 Zhang J, Zhao T J, Gai J Y. Analysis of genetic structure differentiation of released soybean cultivar population and specificity of subpopulations in China. Sci Agric Sin, 2009, 42: 1901–1910 (in Chinese with English abstract) [39]魏世平, 刘晓芬, 杨胜先, 吕海燕, 牛远, 章元明. 中国栽培大豆群体结构不同分类方法的比较. 南京农业大学学报, 2011, 34(2): 13–17 Wei S P, Liu X F, Yang S X, Lu H Y, Niu Y, Zhang Y M. Comparison of various clustering methods for population structure in Chinese cultivated soybean (Glycine max (L.) Merr.). J Nanjing Agric Univ, 2011, 34(2): 13–17 (in Chinese with English abstract) [40]黎裕, 李英慧, 杨庆文, 张锦鹏, 张金梅, 邱丽娟, 王天宇. 基于基因组学的作物种质资源研究: 现状与展望. 中国农业科学, 2015, 48: 3333–3353 Li Y, Li Y H, Yang Q W, Zhang J P, Zhang J M, Qiu L J, Wang T Y. Genomics-based crop germplasm research: advances and perspectives. Sci Agric Sin, 2015, 48: 3333–3353 (in Chinese with English abstract) [41]郭娟娟, 常汝镇, 章建新, 张巨松, 关荣霞, 邱丽娟. 日本大豆种质十胜长叶对我国大豆育成品种的遗传贡献分析. 大豆科学, 2007, 26: 807–819 Guo J J, Chang R Z, Zhang J X, Zhang J S, Guan R X, Qiu L J. Contribution of Japanese soybean germplasm TOKACHI-NAGAHA to Chinese soybean cultivars. Soybean Sci, 2007, 26: 807–819 (in Chinese with English abstract) [42]Toosi A, Fernando R L, Dekkers J C M. Genomic selection in admixed and crossbred populations. J Anim Sci, 2010, 88: 32–46 [43]Asoro F G, Newell M A, Beavis W D, Scott M P, Jannink J L. Accuracy and training population design for genomic selection on quantitative traits in elite North American oats. Plant Genome,2011, 4: 132–144 [44]Guo Z G, Tucker D M, Basten C J, Gandhi H, Ersoz E, Guo B H, Xu Z Y, Wang D L, Gay G. The impact of population structure on genomic prediction in stratified populations. Theor Appl Genet, 2014,127: 749–762 [45]Habier D, Fernando R L, Dekkers J C M. Impact of genetic relationship information on genome-assisted breeding values. Genetics, 2007, 177: 2389–2397 [46]Daetwyler H D, Wong R P, Villanueva B, Woolliams J A. The impact of genetic architecture on genome-wide evaluation methods. Genetics, 2010, 185: 1021–103 |
[1] | MA Juan, ZHU Wei-Hong, LIU Jing-Bao, YU Ting, HUANG Lu, GUO Guo-Jun. Multi-locus genome-wide association study and prediction for general combining ability of maize ear length [J]. Acta Agronomica Sinica, 2023, 49(6): 1562-1572. |
[2] | XU Jia-Bo, WU Peng-Hao, HUANG Bo-Wen, CHEN Zhan-Hui, MA Yue-Hong, REN Jiao-Jiao. QTL locating and genomic selection for tassel-related traits using F2:3 lineage haploids [J]. Acta Agronomica Sinica, 2023, 49(3): 622-633. |
[3] | LIANG Zheng, KE Mei-Yu, CHEN Zhi-Wei, CHEN Xu, GAO Zhen. Function of GmPIN2 family gene in regulating root development in soybean [J]. Acta Agronomica Sinica, 2023, 49(1): 24-35. |
[4] | YAN Weikai. A critical review on the principles and procedures for cultivar development and evaluation [J]. Acta Agronomica Sinica, 2022, 48(9): 2137-2154. |
[5] | LIU Cheng, ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin, GAI Jun-Yi. Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population [J]. Acta Agronomica Sinica, 2022, 48(8): 1884-1893. |
[6] | HUAI Yuan-Yuan, ZHANG Sheng-Rui, WU Ting-Ting, AZAM Muhammad, LI Jing, SUN Shi, HAN Tian-Fu, LI Bin, SUN Jun-Ming. Potential evaluation of molecular markers related to major nutritional quality traits in soybean breeding [J]. Acta Agronomica Sinica, 2022, 48(8): 1957-1976. |
[7] | WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643. |
[8] | DONG Yan-Kun, HUANG Ding-Quan, GAO Zhen, CHEN Xu. Identification, expression profile of soybean PIN-Like (PILS) gene family and its function in symbiotic nitrogen fixation in root nodules [J]. Acta Agronomica Sinica, 2022, 48(2): 353-366. |
[9] | GE Tian-Li, TIAN Yu, ZHANG Hao, LIU Zhang-Xiong, LI Ying-Hui, QIU Li-Juan. QTL mapping and candidate gene prediction of soybean 100-seed weight based on high-density bin map [J]. Acta Agronomica Sinica, 2022, 48(12): 2978-2986. |
[10] | SUN Bing-Rui, PAN Da-Jian, LI Chen, JIANG Li-Qun, ZHANG Jing, LYU Shu-Wei, LIU Qing, MAO Xing-Xue, CHEN Wen-Feng, FAN Zhi-Lan. Genetic structure and evolutionary relationship for cultivated rice resources from Guangdong province based on SLAF tag sequencing [J]. Acta Agronomica Sinica, 2022, 48(10): 2483-2493. |
[11] | ZHANG Xue-Cui, SUN Su-Li, LU Wei-Guo, LI Hai-Chao, JIA Yan-Yan, DUAN Can-Xing, ZHU Zhen-Dong. Identification of resistance gene against phytophthora root rot in new soybean lines breeded in Henan province [J]. Acta Agronomica Sinica, 2021, 47(2): 275-284. |
[12] | ZENG Jian, XU Xian-Chao, XU Yu-Fei, WANG Xiu-Cheng, YU Hai-Yan, FENG Bei-Bei, XING Guang-Nan. Utilization of dynamic transcriptomics analysis for candidate gene mining of 100-seed weight in soybean [J]. Acta Agronomica Sinica, 2021, 47(11): 2121-2133. |
[13] | ZHANG Xue-Cui,ZHONG Chao,DUAN Can-Xing,SUN Su-Li,ZHU Zhen-Dong. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196 [J]. Acta Agronomica Sinica, 2020, 46(7): 997-1005. |
[14] | Dai-Ling LIU,Jun-Feng XIE,Qian-Rui HE,Si-Wei CHEN,Yue HU,Jia ZHOU,Yue-Hui SHE,Wei-Guo LIU,Wen-Yu YANG,Xiao-Ling WU. QTL analysis for relative contents of glycinin and β-conglycinin fractions from storage protein in soybean seeds under monoculture and relay intercropping [J]. Acta Agronomica Sinica, 2020, 46(3): 341-353. |
[15] | CHEN Ying,ZHANG Sheng-Rui,WANG Lan,WANG Lian-Zheng,LI Bin,SUN Jun-Ming. Characteristics of oil components and its relationship with domestication of oil components in wild and cultivated soybean accessions [J]. Acta Agronomica Sinica, 2019, 45(7): 1038-1049. |
|