Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2018, Vol. 44 ›› Issue (01): 53-62.doi: 10.3724/SP.J.1006.2018.00053


Cloning and Characterization of Heat Shock Transcription Factor Gene TaHsfB2d and Its Regulating Role in Thermotolerance

ZHAO Li-Na1,2,**,LIU Zi-Hui1,**,DUAN Shuo-Nan1,ZHANG Yuan-Yuan1,2,LI Guo-Liang1,*,GUO Xiu-Lin1,*   

  1. 1 Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, Hebei, China; 2 College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
  • Received:2017-03-13 Revised:2017-09-10 Online:2018-01-12 Published:2017-09-29
  • Contact: LI Guolang, E-mail: guolianglili@163.com, Tel: 0311-87652127; Guo Xiulin, E-mail: myhf2002@163.com, Tel: 0311-87269032
  • Supported by:

    This study was supported by the Key Project of Natural Science Foundation of Hebei Province (C2016301085), Technological Innovation Project of Modern Agriculture of Hebei Province (2017038997, F17C10006), the Key Research Project of Hebei Province (494-0402-JBN-VT68), and the High-level Talent Project of Hebei Province (A201500130).


Heat shock transcription factors (Hsfs) are key components of heat shock signal transduction pathways involved in the activation of Hsp genes in response to heat stress in plants. There are at least 56 members in wheat Hsf family. Eleven of them belong to class B, among which 5 members belong to subclass B2. In this study, TaHsfB2d was isolated from wheat (Triticum aestivum L.) young leaves treated by heat shock at 37°C for 1.5 h using homologous cloning methods. Sequence analysis showed that the coding sequence (CDS) of TaHsfB2d was 1191 bp encoding a protein of 396 amino acids. The amino acid sequence analysis demonstrated that TaHsfB2d contained a DNA-binding domain (DBD) and nuclear localization signal (NLS). TaHsfB2d protein sequence shared 90%, 85% and 80% identities with the proteins from predicted protein of Hordeum vulgare, HsfB2c of Hordeum vulgare and Brachypodium distachyon, respectively. The qRT-PCR results showed that TaHsfB2d was expressed in multiple tissues and organs of wheat, and the relative expression level of TaHsfB2d was higher in roots at anthesis stage. TaHsfB2d was up-regulated by 37°C heat shock (HS), salicylic acid (SA) and H2O2 in leaves. Furthermore, HS significantly enhanced the expression of TaHsfB2d pretreated with SA or H2O2, the up-regulation expression of TaHsfB2d by HS was significantly inhibited by the combined treatment of 150 μmol L–1 DPI and 20 mmol L–1 DMTU, and the up-regulation expression by SA was completely inhibited. Through transient reporter assay with onion (Allium cepa L.) epidermal cells, we found that TaHsfB2d localized in the nuclei. Yeast overexpressing TaHsfB2d showed stronger growth potential than the control cells overexpressing pYES2 after HS at 50°C for 45 min, and overexpression of TaHsfB2d had no effect on the growth and development of yeast cells. The results revealed that TaHsfB2d perhaps plays a key role in regulating the response to HS through SA signal pathway in plants, which was dependent on existence of H2O2. These results will provide theoretical basis for analysing biological functions and regulating mechanism of TaHsfB2d further.

Key words: wheat, TaHsfB2d, subcelullar-localization, quantitative expression, thermotolerance

[1] Nover L, Scharf K D, Gagliardi D, Vergne P, Czarnecka-Verner E, Gurley W B. The HSF world: classification and properties of plant heat stress transcription factors. Cell Stress Chaperones, 1996, 1: 215–223 [2] Nover L, Bharti K, D?ring P, Mishra S K, Ganguli A, Scharf K D. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones, 2001, 6: 177–189 [3] Guo M, Liu H J. Ma X, Luo D X, Gong Z H, Lu M H. The plant heat stress transcription factors (HSFs): structure, regulation and function in response to aboitic stresses. Front Plant Sci, 2016, 7: 114 [4] Scharf K D, Rose S, Zott W. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO J, 1990, 9: 4495–4501 [5] Xue G P, Sadat S, Drenth J, Mclntyre C L. The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J Exp Bot, 2014, 65: 539–557 [6] Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J, 2006, 48: 535–547 [7] Heerklotz D, D?ring P, Bonzelius F. The balance of nuclear import and export determines the intrancellular distribution and function of tomato heat stress transcription factor HsfA2. Mol Cell Biol, 2001, 21: 1759–1768 [8] Liu H C, Liao H T, Charng Y Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ, 2011, 34: 738–751 [9] Wunderlich M, Gro?-Hardt R, Sch?ff F. Heat shock factor HSFB2a involved in gametophyte development of Arabidopsis thaliana and its expression is controlled by a heat-inducible long non-coding antisense RNA. Plant Mol Biol, 2014, 85: 541–550 [10] Ikeda M, Mitsuda N, Ohme-Takagi M. Arabidopsis HsfB1 and HsfB2b act as repressors for the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol, 2011, 157: 1243–1254 [11] Kumar M, Busch W, Birke H, Kemmerling B, Nürnberger T, Sch?ffl F. Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis. Mol Plant, 2009, 2: 152–165 [12] Zhu X, Thalor S K, Takahashi Y, Berberich T, and Kusano T. An inhibitory effect of the sequence-conserved upstream open-reading frame on the translation of the main open-reading frame of HsfB1 transcripts in Arabidopsis. Plant Cell Environ, 2012, 35: 2014–2030 [13] Ma H, Wang C T, Yang B, Cheng H Y , Wang Z, Mijiti A, Ren C, Qu G H, Zhang H, Ma L. CarHSFB2, a Class B Heat shock transcription factor, is involved in different developmental processes and various stress responses in chickpea (Cicer Arietinum L.). Plant Mol Biol Rep, 2016, 34: 1–14 [14] Kolmos E, Chowa B Y, Pruneda-Pazb J L, Kay S A. Kolmos HsfB2b-mediated repression of PRR7 directs abiotic stress responses of the circadian clock. Proc Natl Acad Sci USA, 2014, 111: 16173–16177 [15] Bharti K, Von KoskullD?ring P, Bharti S, Kumar P, Tintschlk?rbitzer A, Treuter E, Nover L. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with HAC1/CBP. Plant Cell, 2004, 16: 1521–1535 [16] Hahn A, Bublak D, Schleiff E, Scharf K D. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell, 2011, 23: 741–755 [17] Begum T, Reuter R, Sch?ff F. Overexpression of AtHsfB4 induces specific effects on root development of Arabidopsis. Mech Dev, 2012, 130: 54–60 [18] Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A. Heat shock factor gene family in rice: genomic organization and transcript expression profiing in response to high temperature, low temperature and oxidative stresses. Plant Physiol Biochem, 2009, 47: 785–795 [19] Qin D D, Wu H Y, Peng H R, Yao Y Y, Ni Z F, Li Z X, Zhou C L, Sun Q X. Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat(Triticum aestivum L.) by using Wheat Genome Array. BMC Genomics, 2008, 9:432–450 [20] Shim D, Hwang J U, Lee J, Lee S, Choi Y. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell, 2009, 21: 4031–4043 [21] Chauhan H, Khurana N, Agarwal P, Khurana J P, Khurana P. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment. PLoS One, 2013, 8: e79577 [22] Zhang S X, Xu Z S, Li P S, Yang L, Wei Y Q, Chen M, Li L C, Zhang G S, Ma Y Z. Overexpression of TaHSF3 in transgenic Arabidopsis enhances tolerance to extreme temperatures. Plant Mol Biol Rep, 2013, 31: 688–697 [23] 李慧聪, 李国良, 郭秀林. 玉米热激转录因子基因ZmHsf-Like对逆境胁迫响应的信号途径. 作物学报, 2014, 40: 622–628 Li H C, Li G L, Guo X L. Signal transduction pathway of ZmHsf-Like gene responding to different abiotic stresses. Acta Agron Sin, 2014, 40: 622–628 (in Chinese with English abstract) [24] Li H X, Fan R C, Li L B, Wei B, Li G L, Gu L Q, Wang X P, Zhang X Q. Identification and characterization of a novel copper transporter gene family TaCT1 in common wheat. Plant Cell Environ, 2014, 37: 1561–1573 [25] 李慧聪, 李国良, 郭秀林. 玉米热激转录因子基因(ZmHsf06)的克隆、表达和定位分析. 农业生物技术学报, 2015, 23: 41–51 Li H C, Li G L, Guo X L. Cloning, expression characteristics and subcellular-location of heat shock transcription factor ZmHsf06 in Zea mays. J Agric Biotechnol, 2015, 23: 41–51 (in Chinese with English abstract) [26] Gietz D, Jean A S, Woods R A, Schiestl R H. Improved method for high transformation of intact yeast cells. Nucleic Acids Res, 1992, 20: 1425 [27] Li H C, Zhang H N, Li G L, Liu Z H, Zhang Y M, Zhang H M. Expression of maize heat shock transcription factor gene ZmHsf06 enhances the thermotolerance and drought-stress tolerance of transgenic Arabidopsis. Funct Plant Biol, 2015, 42: 1080–1090 [28] Czarnecka-Verner E, Pan S, Salem T, Gurley W B. Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP. Plant Mol Biol, 2004, 56: 57–75 [29] Ikeda M, Ohme-Takagi M. A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol, 2009, 50: 970–975 [30] Bharti K, von Koskull-Doring P, Bharti S, Kumar P, Tintschl Korbitzer A, Treuter E, Nover L. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. Plant Cell, 2004, 16: 1521–1535 [31] Xiang J, Ran J, Zou J, Zhou X, Liu A. Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice. Plant Cell Rep, 2013, 32: 1795–1806 [32] Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Ryals J. Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 1993, 261: 6 [33] Larkindale J, Hall J D, Knight M R, Vierling E. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermos tolerance. Plant Physiol, 2005, 138: 882–897 [34] Snyman M, Cronjé M J. Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings. J Exp Bot, 2008, 59: 2125–2132 [35] 李春光, 陈其军, 高新起, 祁碧菽, 陈乃芝, 许守明, 陈 珈, 王学臣. 拟南芥热激转录因子AtHsfA2调节胁迫反应基因的表达并提高热和氧化胁迫耐性. 中国科学C辑: 生命科学, 2005, 35: 398–407 Li C G, Chen Q J, Gao X Q, Qi B S, Chen N Z, Xu S M, Chen J, Wang X C. Heat shock transcription factor AtHsfA2 regulating genes expression related to stresses and increase endurance to heat and oxidation stress in Arabidopsis. Sci China, Ser C: Life Sci, 2005, 35: 398–407 (in Chinese with English abstract) [36] Liu H C, Charng Y Y. Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol, 2013, 163: 276–290 [37] Ayarpadikannan S, Chung E, Cho C W, So H A, Kim S O, Jeon J M, Kwak M H, Lee S W, Lee J H. Exploration for the salt stress tolerance genes from a salt-treated halophyte, Suaeda asparagoides. Plant Cell Rep, 2012, 31: 35–48 [38] Ogawa D, Yamaguchi K, Nishiuchi T. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot, 2007, 58: 3373–3383

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[6] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[7] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[8] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[9] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[10] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[11] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[12] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[13] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
[14] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[15] LUO Jiang-Tao, ZHENG Jian-Min, PU Zong-Jun, FAN Chao-Lan, LIU Deng-Cai, HAO Ming. Chromosome transmission in hybrids between tetraploid and hexaploid wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1427-1436.
Full text



No Suggested Reading articles found!