Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2018, Vol. 44 ›› Issue (01): 53-62.doi: 10.3724/SP.J.1006.2018.00053

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Characterization of Heat Shock Transcription Factor Gene TaHsfB2d and Its Regulating Role in Thermotolerance

ZHAO Li-Na1,2,**,LIU Zi-Hui1,**,DUAN Shuo-Nan1,ZHANG Yuan-Yuan1,2,LI Guo-Liang1,*,GUO Xiu-Lin1,*   

  1. 1 Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, Hebei, China; 2 College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
  • Received:2017-03-13 Revised:2017-09-10 Online:2018-01-12 Published:2017-09-29
  • Contact: LI Guolang, E-mail: guolianglili@163.com, Tel: 0311-87652127; Guo Xiulin, E-mail: myhf2002@163.com, Tel: 0311-87269032
  • Supported by:

    This study was supported by the Key Project of Natural Science Foundation of Hebei Province (C2016301085), Technological Innovation Project of Modern Agriculture of Hebei Province (2017038997, F17C10006), the Key Research Project of Hebei Province (494-0402-JBN-VT68), and the High-level Talent Project of Hebei Province (A201500130).

Abstract:

Heat shock transcription factors (Hsfs) are key components of heat shock signal transduction pathways involved in the activation of Hsp genes in response to heat stress in plants. There are at least 56 members in wheat Hsf family. Eleven of them belong to class B, among which 5 members belong to subclass B2. In this study, TaHsfB2d was isolated from wheat (Triticum aestivum L.) young leaves treated by heat shock at 37°C for 1.5 h using homologous cloning methods. Sequence analysis showed that the coding sequence (CDS) of TaHsfB2d was 1191 bp encoding a protein of 396 amino acids. The amino acid sequence analysis demonstrated that TaHsfB2d contained a DNA-binding domain (DBD) and nuclear localization signal (NLS). TaHsfB2d protein sequence shared 90%, 85% and 80% identities with the proteins from predicted protein of Hordeum vulgare, HsfB2c of Hordeum vulgare and Brachypodium distachyon, respectively. The qRT-PCR results showed that TaHsfB2d was expressed in multiple tissues and organs of wheat, and the relative expression level of TaHsfB2d was higher in roots at anthesis stage. TaHsfB2d was up-regulated by 37°C heat shock (HS), salicylic acid (SA) and H2O2 in leaves. Furthermore, HS significantly enhanced the expression of TaHsfB2d pretreated with SA or H2O2, the up-regulation expression of TaHsfB2d by HS was significantly inhibited by the combined treatment of 150 μmol L–1 DPI and 20 mmol L–1 DMTU, and the up-regulation expression by SA was completely inhibited. Through transient reporter assay with onion (Allium cepa L.) epidermal cells, we found that TaHsfB2d localized in the nuclei. Yeast overexpressing TaHsfB2d showed stronger growth potential than the control cells overexpressing pYES2 after HS at 50°C for 45 min, and overexpression of TaHsfB2d had no effect on the growth and development of yeast cells. The results revealed that TaHsfB2d perhaps plays a key role in regulating the response to HS through SA signal pathway in plants, which was dependent on existence of H2O2. These results will provide theoretical basis for analysing biological functions and regulating mechanism of TaHsfB2d further.

Key words: wheat, TaHsfB2d, subcelullar-localization, quantitative expression, thermotolerance

[1] Nover L, Scharf K D, Gagliardi D, Vergne P, Czarnecka-Verner E, Gurley W B. The HSF world: classification and properties of plant heat stress transcription factors. Cell Stress Chaperones, 1996, 1: 215–223 [2] Nover L, Bharti K, D?ring P, Mishra S K, Ganguli A, Scharf K D. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones, 2001, 6: 177–189 [3] Guo M, Liu H J. Ma X, Luo D X, Gong Z H, Lu M H. The plant heat stress transcription factors (HSFs): structure, regulation and function in response to aboitic stresses. Front Plant Sci, 2016, 7: 114 [4] Scharf K D, Rose S, Zott W. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO J, 1990, 9: 4495–4501 [5] Xue G P, Sadat S, Drenth J, Mclntyre C L. The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J Exp Bot, 2014, 65: 539–557 [6] Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J, 2006, 48: 535–547 [7] Heerklotz D, D?ring P, Bonzelius F. The balance of nuclear import and export determines the intrancellular distribution and function of tomato heat stress transcription factor HsfA2. Mol Cell Biol, 2001, 21: 1759–1768 [8] Liu H C, Liao H T, Charng Y Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ, 2011, 34: 738–751 [9] Wunderlich M, Gro?-Hardt R, Sch?ff F. Heat shock factor HSFB2a involved in gametophyte development of Arabidopsis thaliana and its expression is controlled by a heat-inducible long non-coding antisense RNA. Plant Mol Biol, 2014, 85: 541–550 [10] Ikeda M, Mitsuda N, Ohme-Takagi M. Arabidopsis HsfB1 and HsfB2b act as repressors for the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol, 2011, 157: 1243–1254 [11] Kumar M, Busch W, Birke H, Kemmerling B, Nürnberger T, Sch?ffl F. Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis. Mol Plant, 2009, 2: 152–165 [12] Zhu X, Thalor S K, Takahashi Y, Berberich T, and Kusano T. An inhibitory effect of the sequence-conserved upstream open-reading frame on the translation of the main open-reading frame of HsfB1 transcripts in Arabidopsis. Plant Cell Environ, 2012, 35: 2014–2030 [13] Ma H, Wang C T, Yang B, Cheng H Y , Wang Z, Mijiti A, Ren C, Qu G H, Zhang H, Ma L. CarHSFB2, a Class B Heat shock transcription factor, is involved in different developmental processes and various stress responses in chickpea (Cicer Arietinum L.). Plant Mol Biol Rep, 2016, 34: 1–14 [14] Kolmos E, Chowa B Y, Pruneda-Pazb J L, Kay S A. Kolmos HsfB2b-mediated repression of PRR7 directs abiotic stress responses of the circadian clock. Proc Natl Acad Sci USA, 2014, 111: 16173–16177 [15] Bharti K, Von KoskullD?ring P, Bharti S, Kumar P, Tintschlk?rbitzer A, Treuter E, Nover L. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with HAC1/CBP. Plant Cell, 2004, 16: 1521–1535 [16] Hahn A, Bublak D, Schleiff E, Scharf K D. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell, 2011, 23: 741–755 [17] Begum T, Reuter R, Sch?ff F. Overexpression of AtHsfB4 induces specific effects on root development of Arabidopsis. Mech Dev, 2012, 130: 54–60 [18] Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A. Heat shock factor gene family in rice: genomic organization and transcript expression profiing in response to high temperature, low temperature and oxidative stresses. Plant Physiol Biochem, 2009, 47: 785–795 [19] Qin D D, Wu H Y, Peng H R, Yao Y Y, Ni Z F, Li Z X, Zhou C L, Sun Q X. Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat(Triticum aestivum L.) by using Wheat Genome Array. BMC Genomics, 2008, 9:432–450 [20] Shim D, Hwang J U, Lee J, Lee S, Choi Y. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell, 2009, 21: 4031–4043 [21] Chauhan H, Khurana N, Agarwal P, Khurana J P, Khurana P. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment. PLoS One, 2013, 8: e79577 [22] Zhang S X, Xu Z S, Li P S, Yang L, Wei Y Q, Chen M, Li L C, Zhang G S, Ma Y Z. Overexpression of TaHSF3 in transgenic Arabidopsis enhances tolerance to extreme temperatures. Plant Mol Biol Rep, 2013, 31: 688–697 [23] 李慧聪, 李国良, 郭秀林. 玉米热激转录因子基因ZmHsf-Like对逆境胁迫响应的信号途径. 作物学报, 2014, 40: 622–628 Li H C, Li G L, Guo X L. Signal transduction pathway of ZmHsf-Like gene responding to different abiotic stresses. Acta Agron Sin, 2014, 40: 622–628 (in Chinese with English abstract) [24] Li H X, Fan R C, Li L B, Wei B, Li G L, Gu L Q, Wang X P, Zhang X Q. Identification and characterization of a novel copper transporter gene family TaCT1 in common wheat. Plant Cell Environ, 2014, 37: 1561–1573 [25] 李慧聪, 李国良, 郭秀林. 玉米热激转录因子基因(ZmHsf06)的克隆、表达和定位分析. 农业生物技术学报, 2015, 23: 41–51 Li H C, Li G L, Guo X L. Cloning, expression characteristics and subcellular-location of heat shock transcription factor ZmHsf06 in Zea mays. J Agric Biotechnol, 2015, 23: 41–51 (in Chinese with English abstract) [26] Gietz D, Jean A S, Woods R A, Schiestl R H. Improved method for high transformation of intact yeast cells. Nucleic Acids Res, 1992, 20: 1425 [27] Li H C, Zhang H N, Li G L, Liu Z H, Zhang Y M, Zhang H M. Expression of maize heat shock transcription factor gene ZmHsf06 enhances the thermotolerance and drought-stress tolerance of transgenic Arabidopsis. Funct Plant Biol, 2015, 42: 1080–1090 [28] Czarnecka-Verner E, Pan S, Salem T, Gurley W B. Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP. Plant Mol Biol, 2004, 56: 57–75 [29] Ikeda M, Ohme-Takagi M. A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol, 2009, 50: 970–975 [30] Bharti K, von Koskull-Doring P, Bharti S, Kumar P, Tintschl Korbitzer A, Treuter E, Nover L. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. Plant Cell, 2004, 16: 1521–1535 [31] Xiang J, Ran J, Zou J, Zhou X, Liu A. Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice. Plant Cell Rep, 2013, 32: 1795–1806 [32] Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Ryals J. Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 1993, 261: 6 [33] Larkindale J, Hall J D, Knight M R, Vierling E. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermos tolerance. Plant Physiol, 2005, 138: 882–897 [34] Snyman M, Cronjé M J. Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings. J Exp Bot, 2008, 59: 2125–2132 [35] 李春光, 陈其军, 高新起, 祁碧菽, 陈乃芝, 许守明, 陈 珈, 王学臣. 拟南芥热激转录因子AtHsfA2调节胁迫反应基因的表达并提高热和氧化胁迫耐性. 中国科学C辑: 生命科学, 2005, 35: 398–407 Li C G, Chen Q J, Gao X Q, Qi B S, Chen N Z, Xu S M, Chen J, Wang X C. Heat shock transcription factor AtHsfA2 regulating genes expression related to stresses and increase endurance to heat and oxidation stress in Arabidopsis. Sci China, Ser C: Life Sci, 2005, 35: 398–407 (in Chinese with English abstract) [36] Liu H C, Charng Y Y. Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol, 2013, 163: 276–290 [37] Ayarpadikannan S, Chung E, Cho C W, So H A, Kim S O, Jeon J M, Kwak M H, Lee S W, Lee J H. Exploration for the salt stress tolerance genes from a salt-treated halophyte, Suaeda asparagoides. Plant Cell Rep, 2012, 31: 35–48 [38] Ogawa D, Yamaguchi K, Nishiuchi T. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot, 2007, 58: 3373–3383

[1] ZHANG Li-Hua, ZHANG Jing-Ting, DONG Zhi-Qiang, HOU Wan-Bin, ZHAI Li-Chao, YAO Yan-Rong, LYU Li-Hua, ZHAO Yi-An, JIA Xiu-Ling. Effect of water management on yield and its components of winter wheat in different precipitation years [J]. Acta Agronomica Sinica, 2023, 49(9): 2539-2551.
[2] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
[3] SU Zai-Xing, HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect [J]. Acta Agronomica Sinica, 2023, 49(8): 2133-2143.
[4] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[5] LI Yu-Xing, MA Liang-Liang, ZHANG Yue, QIN Bo-Ya, ZHANG Wen-Jing, MA Shang-Yu, HUANG Zheng-Lai, FAN Yong-Hui. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage [J]. Acta Agronomica Sinica, 2023, 49(8): 2210-2224.
[6] LIU Qiong, YANG Hong-Kun, CHEN Yan-Qi, WU Dong-Ming, HUANG Xiu-Lan, FAN Gao-Qiong. Effect of nitrogen application rate on grain quality, wine quality and volatile flavor compounds of waxy and no-waxy wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2240-2258.
[7] LIN Fen-Fang, CHEN Xing-Yu, ZHOU Wei-Xun, WANG Qian, ZHANG Dong-Yan. Hyperspectral remote sensing detection of Fusarium head blight in wheat based on the stacked sparse auto-encoder algorithm [J]. Acta Agronomica Sinica, 2023, 49(8): 2275-2287.
[8] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Li-Fang, WANG Chen-Yang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[9] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[10] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[11] DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953.
[12] LI Ling-Yu, ZHOU Qi-Rui, LI Yang, ZHANG An-Min, WANG Bei-Bei, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Transcriptome analysis of exogenous 6-BA in regulating young spike development of wheat after low temperature at booting stage [J]. Acta Agronomica Sinica, 2023, 49(7): 1808-1817.
[13] FENG Lian-Jie, YU Zhen-Wen, ZHANG Yong-Li, SHI Yu. Effects of irrigation on tiller occurrence, photo-assimilates production and distribution in different stem and tillers and spike formation in wheat [J]. Acta Agronomica Sinica, 2023, 49(6): 1653-1667.
[14] ZHU Xu-Dong, YANG Lan-Feng, CHEN Yuan-Yuan, HOU Ze-Hao, LUO Yi-Rou, XIONG Ze-Hao, FANG Zheng-Wu. Biological functional analysis of common buckwheat (Fagopyrum esculentum) FeSGT1 gene in enhancing drought stress resistance [J]. Acta Agronomica Sinica, 2023, 49(6): 1573-1583.
[15] WANG Hao, SUN Ni-Na, WANG Chu, XIAO Lu-Ning, XIAO Bei, LI Dong, LIU Jie, QIN Ran, WU Yong-Zhen, SUN Han, ZHAO Chun-Hua, LI Lin-Zhi, CUI Fa, LIU Wei. Genetic basis analysis of high-yielding in Yannong wheat varieties [J]. Acta Agronomica Sinica, 2023, 49(6): 1584-1600.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!