Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (5): 1230-1247.doi: 10.3724/SP.J.1006.2025.41072

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Differences in transcriptomic responses to cadmium stress in high/low-Cd- accumulation wheat

WANG Qing(), WANG Yi-Xiu, LI Yue-Nan, LYU Yong-Hui, ZHANG Hai-Bo, LIU Na*(), CHENG Hong-Yan*()   

  1. College of Resource and Environment, Shanxi Agricultural University, Taigu 030801, Shanxi, China
  • Received:2024-10-27 Accepted:2025-01-23 Online:2025-05-12 Published:2025-02-11
  • Contact: *E-mail: liuna@sxau.edu.cn; E-mail: ndchenghy@163.com
  • Supported by:
    National Natural Science Foundation of China(42107044);Distinguished and Excellent Young Scholar Cultivation Project of Shanxi Agricultural University(2022YQPYGC07);Shanxi Province Excellent Doctor Award Fund(SXBYKY2021038);Shanxi Province Major Science and Technology Special Plan “Rank-Listed Project” titled “Research and Application Demonstration of Key Technologies in the Super Quality Edible Mushroom Industry”(202301140601015);Shanxi Agricultural University “Special” and “Excellent” Agricultural High Quality Development Science and Technology Support Project(TYGC24-03)

Abstract:

Cadmium (Cd) is readily absorbed by wheat, posing a significant threat to human health. However, the molecular mechanisms underlying wheat’s response to Cd stress remain poorly understood. Investigating these mechanisms is essential for developing low-Cd-accumulating wheat varieties through genetic improvement. In this study, hydroponic culture combined with transcriptome sequencing was used to analyze gene regulatory network changes in two wheat varieties with differing Cd accumulation capacities (Jimai 22 and Zhoumai 32) under Cd stress at concentrations of 0, 0.05 mmol L-1, and 0.10 mmol L-1. Functional enrichment analyses using the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Protein-Protein Interaction (PPI) networks revealed that Cd stress induced the expression of defense-related genes. The endoplasmic reticulum protein processing pathway was the most significantly enriched upregulated pathway in Jimai 22 under 0.05 mmol L-1 Cd stress, while the benzoxazinoid biosynthesis pathway was highly enriched in Jimai 22 under 0.10 mmol L-1 Cd stress. Additionally, the ribosomal protein uL13 family was identified as a central hub in the PPI network under Cd stress, highlighting its importance in maintaining ribosomal function. Key transporters, including TaNRAMP1, TaNRAMP2, TaNRAMP5, TaZIP6, and TaABCG36, were found to play pivotal roles in Cd uptake and accumulation. Moreover, transcription factors such as WRKY, MYB, bHLH, and bZIP were upregulated under Cd stress, contributing to the alleviation of Cd-induced damage. Weighted gene co-expression network analysis (WGCNA) identified LOC123168319 and LOC123145825 as potential candidate genes associated with Cd accumulation. The differentially expressed genes and metabolic pathways identified in this study provide valuable resources for genetic improvement of wheat. Technologies such as CRISPR/Cas9 can be employed to reduce Cd absorption and accumulation, offering insights into wheat’s Cd resistance mechanisms and supporting the breeding of low-Cd wheat varieties.

Key words: Cd stress, wheat, differentially expressed gene, protein-protein interaction, weighted gene co-expression network

Table S1

Effects of Cd stress on root and plant length, and biomass of different wheat varieties"

品种
Variety
Cd浓度
Cd concentration
(mmol L-1)
株高
Plant height
(cm)
根长
Root length
(cm)
地上部干重
Dry weight of the
aboveground parts (g)
根干重
Dry weight of the roots
(g)
济麦22 Jimai 22 0 22.4 Aa 27.3 Aa 2.42 Aa 1.01 Aa
泰山24 Taishan 24 0 21.0 Aab 26.8 Aa 2.11 Aab 0.92 Aa
周麦27 Zhoumai 27 0 19.2 Ab 26.6 Aa 1.90 Ab 0.89 Aa
周麦32 Zhoumai 32 0 20.7 Aab 26.2 Aa 1.95 Ab 0.91 Aa
济麦22 Jimai 22 0.05 17.2 Ba 25.5 Aa 1.18 Ba 0.43 Ba
泰山24 Taishan 24 0.05 16.2 Ba 22.8 Bab 1.15 Bab 0.43 Bab
周麦27 Zhoumai 27 0.05 12.4 Bb 23.5 Bab 1.06 Bbc 0.41 Bab
周麦 32 Zhoumai 32 0.05 13.9 Bb 22.2 Bb 0.95 Bc 0.40 Bb
济麦22 Jimai 22 0.10 13.0 Ba 21.2 Ba 0.83 Ca 0.36 Ba
泰山24 Taishan 24 0.10 11.6 Cab 20.3 Bab 0.78 Ca 0.35 Cab
周麦27 Zhoumai 27 0.10 9.9 Cc 18.3 Cab 0.66 Cb 0.31 Cc
周麦32 Zhoumai 32 0.10 10.5 Cbc 16.9 Bb 0.63 Cb 0.32 Cbc

Fig. S1

Antioxidant enzyme activities of different wheat cultivars under different Cd stress A-D represent malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities, respectively. Different lowercase letters indicate significant differences (Tukey’s test; P < 0.05)."

Fig. S2

Sulfhydryl substance contents of different wheat cultivars under different Cd stress A-C represent contents of glutathione (GSH), non-protein thiol (NPT), and phytochelatins (PCs), respectively. Different lowercase letters indicate significant differences (Tukey’s test; P < 0.05)."

Fig. 1

Cd contents in the aboveground (A) and roots (B) of different wheat cultivars under different Cd stress Different lowercase letters indicate significant differences among different varieties at the same concentration (Tukey’s test; P < 0.05)."

Fig. 2

Principal component analysis (PCA) and differentially expressed genes (DEG) of Jimai 22 and Zhoumai 32 under different Cd stress A: principal component analysis of DEG in Jimai 22 and Zhoumai 32 samples under Cd stress. Cd-22 and Cd-32 represent the wheat varieties Jimai 22 and Zhoumai 32, respectively. The numbers 0, 0.05, and 0.10 indicate Cd stress levels of 0, 0.05, and 0.10 mmol L-1, respectively. B-D: volcano plots of DEG under CK, 0.05, and 0.10 mmol L-1 Cd stress, respectively (Zhoumai 32 is the control). X-axis represents the fold change of the comparison group, and Y-axis represents the significance of the differential expression, which indicates the P-value. FC indicates fold change; blue circles indicate insignificant differences; green and red circles indicate down and up regulated genes, respectively."

Fig. 3

GO and KEGG enrichment analyses of DEG in the aboveground parts of Jimai 22 and Zhoumai 32 under different Cd stress GO and KEGG enrichment analyses of DEG in the CK group (A and B), under 0.05 mmol L-1 Cd stress (C and D), and under 0.10 mmol L-1 Cd stress (E and F). The vertical axis in the figure represents the pathway entry, and the horizontal axis represents the ratio of the DEG annotated in the entry to the number of all DEG annotated to the entry. The size of the circle represents the number of DEG enriched in the pathway. The larger the circle, the greater the number. The color of the circle represents the P-value of the hypergeometric test. The closer the P-value is to 0 (indicated by red), the more significant the enrichment is."

Fig. 4

Heatmap of DEG related to Cd transporters under different Cd stress"

Fig. 5

Protein-protein interaction (PPI) analysis of network under different Cd stress In the differential protein interaction network diagram, circles represent differential proteins. The shade of the circle indicates the level of connectivity, the darker the color, the higher the connectivity."

Fig. 6

Family statistics of transcription factors (TF) under different Cd stress"

Table 1

Statistics of significant metabolic pathway genes"

通路名称
Pathway name
基因名称
Gene name
描述
Description
差异表达倍数
Fold change
内质网蛋白质加工
Protein processing in the endoplasmic reticulum
LOC123076941 16.9 kD class I heat shock protein 1-like 255.3
LOC123146971 144.6
LOC123065008 17.5 kD class II heat shock protein-like 115.1
LOC123145125 93.4
LOC123047559 70.1
LOC123045683 Uncharacterized LOC123045683, transcript variant X11 20.7
LOC123092591 Heat shock cognate 70 kD protein 2-like 13.9
LOC123088499 11.9
LOC123144151 8.0
LOC732706 Small heat shock protein, chloroplastic-like 7.9
苯并噁嗪生物合成
Benzoxazine
biosynthesis
LOC123117220 248.9
LOC123101970 Indolin-2-one monooxygenase-like 43.6
LOC123119086 Indolin-2-one monooxygenase-like 36.4
LOC123043330 DIBOA-glucoside dioxygenase BX6-like 34.7
LOC123110087 Indolin-2-one monooxygenase-like 11.5
LOC123046742 9.0
LOC123150283 7.4
LOC123147887 6.2
LOC123064487 Indole-3-glycerol phosphate lyase, chloroplastic-like 2.8
LOC100682422 DIMBOA UDP-glucosyltransferase BX8 2.6
0.05 mmol L-1 Cd胁迫蛋白-蛋白相互作用
Protein-protein
interaction under
0.05 mmol L-1
Cd stress
LOC123143519 2008.9
LOC123083701 1397.5
LOC123154376 V-type proton ATPase subunit C-like, transcript variant X3 1067.2
LOC123047031 Ubiquitin-40S ribosomal protein S27a-2-like 820.5
LOC123159281 316.9
LOC123137258 264.9
LOC123064314 60S ribosomal protein L9 113.4
LOC123068951 80.7
LOC123142574 Uncharacterized 53.5
LOC123039371 19.1
0.10 mmol L-1 Cd胁迫蛋白-蛋白相互作用
Protein-protein
interaction under
0.10 mmol L-1
Cd stress
LOC123142574 1223.2
LOC123083701 767.6
LOC123091968 498.7
LOC123047031 Ubiquitin-40S ribosomal protein S27a-2-like 452.4
LOC123091201 26S proteasome non-ATPase regulatory subunit 13 homolog B-like 354.7
LOC123177030 277.2
LOC123129514 Glyoxysomal fatty acid beta-oxidation multifunctional protein MFP-a-like 222.8
LOC123137258 186.9
LOC123064314 60S ribosomal protein L9 92.4
LOC123159281 63.8

Fig. 7

Correlation heat map between module and phenotype under Cd stress ME: module eigengene; A-Cd: aboveground Cd content; R-Cd: root Cd content; MDA: malondialdehyde; POD : peroxidase; CAT: catalase; SOD: superoxide dismutase; GSH: glutathione; NPT: non-protein thiol; PCs: phytochelatins; ** indicates a highly significant difference (P < 0.01)."

Fig. 8

KEGG enrichment and visualization analyses of Cd-related modules under Cd stress A and B represent the KEGG enrichment analysis of the brown and tan modules under Cd stress, respectively; C and D show the KEGG enrichment analysis and visualization of the lightcyan module; E and F display the KEGG enrichment analysis and visualization of the darkred module; G and H present the KEGG enrichment and visualization results for the blue module. M: metabolism; GIP: genetic information processing; EIP: environmental information processing; OS: organismal systems; CP: cellular processes."

[1] Hussain B, Ashraf M N, Shafeeq-Ur-Rahman, Abbas A, Li J M, Farooq M. Cadmium stress in paddy fields: effects of soil conditions and remediation strategies. Sci Total Environ, 2021, 754: 142188.
[2] 范业赓, 廖洁, 王天顺, 丘立杭, 陈荣发, 黄杏, 莫磊兴, 吴建明. 镉胁迫对甘蔗抗氧化酶系统及非蛋白巯基物质的影响. 湖南农业科学, 2019, (4): 23-27.
Fan Y G, Liao J, Wang T S, Qiu L H, Chen R F, Huang X, Mo L X, Wu J M. Effects of cadmium stress on antioxidant enzyme system and non-protein thiols substances in sugarcane. Hunan Agric Sci, 2019, (4): 23-27 (in Chinese with English abstract).
[3] Xu J H, Hu C Y, Wang M L, Zhao Z S, Zhao X X, Cao L, Lu Y F, Cai X Y. Changeable effects of coexisting heavy metals on transfer of cadmium from soils to wheat grains. J Hazard Mater, 2022, 423: 127182.
[4] Xing W Q, Zhang H Y, Scheckel K G, Li L P. Heavy metal and metalloid concentrations in components of 25 wheat (Triticum aestivum) varieties in the vicinity of lead smelters in Henan province, China. Environ Monit Assess, 2016, 188: 23.
doi: 10.1007/s10661-015-5023-3 pmid: 26661959
[5] Hu B F, Shao S, Ni H, Fu Z Y, Huang M X, Chen Q X, Shi Z. Assessment of potentially toxic element pollution in soils and related health risks in 271 cities across China. Environ Pollut, 2021, 270: 116196.
[6] 刘娜, 张少斌, 郭欣宇, 宁瑞艳. 小麦籽粒镉含量影响因素Meta分析和决策树分析. 环境科学, 2023, 44: 2265-2274.
pmid: 37040975
Liu N, Zhang S B, Guo X Y, Ning R Y. Influencing factors of cadmium content in wheat grain: a meta-analysis and decision tree analysis. Environ Sci, 2023, 44: 2265-2274 (in Chinese with English abstract).
doi: 10.13227/j.hjkx.202204090 pmid: 37040975
[7] 唐舒庭, 卢一铭, 肖盛柏, 崔浩, 魏世强. 稻田土壤砷、镉复合污染阻控技术研究进展. 环境科学, 2023, 44: 5704-5717.
Tang S T, Lu Y M, Xiao S B, Cui H, Wei S Q. Research advances in barrier technology of paddy soil co-contaminated with As and Cd. Environ Sci, 2023, 44: 5704-5717 (in Chinese with English abstract).
[8] Liu C, Peng L M, Lei M F, Li Y F. Research on crossing tunnels’ seismic response characteristics. KSCE J Civ Eng, 2019, 23: 4910-4920.
[9] Liu N, Huang X M, Sun L M, Li S S, Chen Y H, Cao X Y, Wang W X, Dai J L, Rinnan R. Screening stably low cadmium and moderately high micronutrients wheat cultivars under three different agricultural environments of China. Chemosphere, 2020, 241: 125065.
[10] 郭震华, 蔡丽君, 潘国君, 王立楠, 周雪松, 杜晓东, 蔡永盛, 张希瑞, 韩笑, 周通, 等. 低温胁迫下水稻孕穗期幼穗的转录组动态分析. 种子, 2024, 43(8): 60-68.
Guo Z H, Cai L J, Pan G J, Wang L N, Zhou X S, Du X D, Cai Y S, Zhang X R, Han X, Zhou T, et al. Transcriptome dynamic analysis on young panicle of rice at booting stage under cold stress. Seed, 2024, 43(8): 60-68 (in Chinese with English abstract).
[11] 王慧敏. 谷子苗期响应盐碱胁迫的生理和转录组分析及SiAAAPs家族研究. 河北科技师范学院硕士学位论文, 河北秦皇岛, 2024.
Wang H M. Physiological Investigation, Transcriptome Analysis, and SiAAAPs Family Study of Foxtail Millet Response to Saline-alkali Stress at the Seedling Stage. MS Thesis of Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China, 2024 (in Chinese with English abstract).
[12] 姚琦, 石俊婷, 鲁振强, 刘大丽. 甜菜镉胁迫应答基因ZAT10的克隆与功能预测. 中国糖料, 2024, 46(3): 1-9.
Yao Q, Shi J T, Lu Z Q, Liu D L. Cloning and functional prediction of the sugar beet cadmium stress-responsive gene ZAT10. Sugar Crops China, 2024, 46(3): 1-9 (in Chinese with English abstract).
[13] Wang Z Q, Zhang W Y, Huang W J, Biao A, Lin S, Wang Y, Yan S J, Zeng S H. Salt stress affects the fruit quality of Lycium ruthenicum Murr. Ind Crops Prod, 2023, 193: 116240.
[14] 倪显春, 任建国, 庞玉新, 王俊丽. 转录组测序分析艾纳香对镉胁迫响应机制. 分子植物育种, 网络首发[2023-01-19], https://kns.cnki.net/kcms/detail//46.1068.S.20230119.0907.002.html.
Ni X C, Ren J G, Pang Y X, Wang J L. Transcriptome sequencing analysis of the response mechanism of blumea balsamifera Dc to cadmium stress. Mol Plant Breed, Published online [2023-01-19], https://kns.cnki.net/kcms/detail//46.1068.S.20230119.0907.002.html (in Chinese with English abstract).
[15] 张大众. 不同镉耐受性小麦对镉胁迫的响应和耐受分子机制研究. 西北农林科技大学博士学位论文, 陕西杨凌, 2022.
Zhang D Z. Response and Tolerant Molecular Mechanism of Cadmium Stress in Common Wheat with Distinct Cadmium Tolerance. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2022 (in Chinese with English abstract).
[16] Zhang D Z, Liu J J, Zhang Y B, Wang H R, Wei S W, Zhang X, Zhang D, Ma H S, Ding Q, Ma L J. Morphophysiological, proteomic and metabolomic analyses reveal cadmium tolerance mechanism in common wheat (Triticum aestivum L.). J Hazard Mater, 2023, 445: 130499.
[17] Wang M, Li H B, Dang F, Cheng B X, Cheng C, Ge C H, Zhou D M. Common metabolism and transcription responses of low- cadmium-accumulative wheat (Triticum aestivum L.) cultivars sprayed with nano-selenium. Sci Total Environ, 2024, 948: 174936.
[18] 丁艳. 小麦叶片对Cd、Hg和1, 2, 4-三氯苯胁迫应答的蛋白组学研究. 扬州大学硕士学位论文, 江苏扬州, 2008.
Ding Y. Proteomic Study for Wheat Leaves Responding to Cd, Hg and TCB Stress. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2008 (in Chinese with English abstract).
[19] 陈倩, 谢旗. 内质网胁迫在植物中的研究进展. 生物技术通报, 2018, 34(1): 15-25.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0996
Chen Q, Xie Q. The research progress of the endoplasmic reticulum (ER) stress response in plant. Biotechnol Bull, 2018, 34(1): 15-25 (in Chinese with English abstract).
[20] Liu J X, Srivastava R, Che P, Howell S H. Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant J, 2007, 51: 897-909.
[21] McCracken A A, Brodsky J L. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J Cell Biol, 1996, 132: 291-298.
pmid: 8636208
[22] 白雨婷, 张文晓, 周倩, 向凤宁. 转录因子在植物内质网胁迫中的作用及分子机制研究进展. 植物生理学报, 2024, 60: 1055-1067.
Bai Y T, Zhang W X, Zhou Q, Xiang F N. Advances in roles and molecular mechanisms of transcription factors in endoplasmic reticulum stress in plants. Plant Physiol J, 2024, 60: 1055-1067 (in Chinese with English abstract).
[23] Liu L J, Cui F, Li Q L, Yin B J, Zhang H W, Lin B Y, Wu Y R, Xia R, Tang S Y, Xie Q. The endoplasmic reticulum-associated degradation is necessary for plant salt tolerance. Cell Res, 2011, 21: 957-969.
doi: 10.1038/cr.2010.181 pmid: 21187857
[24] Ciobanu L G, Sachdev P S, Trollor J N, Reppermund S, Thalamuthu A, Mather K A, Cohen-Woods S, Stacey D, Toben C, Schubert K O, et al. Co-expression network analysis of peripheral blood transcriptome identifies dysregulated protein processing in endoplasmic reticulum and immune response in recurrent MDD in older adults. J Psychiatr Res, 2018, 107: 19-27.
doi: S0022-3956(18)30744-1 pmid: 30312913
[25] Frey M, Chomet P, Glawischnig E, Stettner C, Grün S, Winklmair A, Eisenreich W, Bacher A, Meeley R B, Briggs S P, et al. Analysis of a chemical plant defense mechanism in Grasses. Science, 1997, 277: 696-699.
doi: 10.1126/science.277.5326.696 pmid: 9235894
[26] Tzin V, Hojo Y, Strickler S R, Bartsch L J, Archer C M, Ahern K R, Zhou S Q, Christensen S A, Galis I, Mueller L A, et al. Rapid defense responses in maize leaves induced by Spodoptera exigua caterpillar feeding. J Exp Bot, 2017, 68: 4709-4723.
[27] von Rad U, Hüttl R, Lottspeich F, Gierl A, Frey M. Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize. Plant J, 2001, 28: 633-642.
pmid: 11851909
[28] Poschenrieder C, Tolrà R P, Barceló J. A role for cyclic hydroxamates in aluminium resistance in maize. J Inorg Biochem, 2005, 99: 1830-1836.
pmid: 16054220
[29] Niculaes C, Abramov A, Hannemann L, Frey M. Plant protection by benzoxazinoids—recent insights into biosynthesis and function. Agronomy, 2018, 8: 143.
[30] Zhao Z K, Gao X F, Ke Y, Chang M M, Xie L, Li X F, Gu M H, Liu J P, Tang X L. A unique aluminum resistance mechanism conferred by aluminum and salicylic-acid-activated root efflux of benzoxazinoids in maize. Plant Soil, 2019, 437: 273-289.
[31] 苏小雨. 干旱胁迫下褪黑素对玉米幼苗生理生化的调控及蛋白组分析. 河南农业大学博士学位论文, 河南郑州, 2018.
Su X Y. The Role of Melatonin on Regulation Mechanism of Physiological and Proteome Analysis in Maize Seedlings Under Drought Stress. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2018 (in Chinese with English abstract).
[32] Adeva-Andany M M, Carneiro-Freire N, Seco-Filgueira M, Fernández-Fernández C, Mouriño-Bayolo D. Mitochondrial β-oxidation of saturated fatty acids in humans. Mitochondrion, 2019, 46: 73-90.
doi: S1567-7249(17)30289-1 pmid: 29551309
[33] Yu H L, Du X Q, Zhang F X, Zhang F, Hu Y, Liu S C, Jiang X N, Wang G D, Liu D. A mutation in the E2 subunit of the mitochondrial pyruvate dehydrogenase complex in Arabidopsis reduces plant organ size and enhances the accumulation of amino acids and intermediate products of the TCA cycle. Planta, 2012, 236: 387-399.
[34] 刘缨, 霍诗睿, 李婷, 赫荣乔. 在教学中通过脱羧线索解析三羧酸循环. 微生物学通报, 2024, 51: 5270-5281.
Liu Y, Huo S R, Li T, He R Q. Teaching of tricarboxylic acid cycle via decarboxylation clues. Microbiol China, 2024, 51: 5270-5281 (in Chinese with English abstract).
[35] Hoffland E, Kuyper T W, Wallander H, Plassard C, Gorbushina A A, Haselwandter K, Holmstrom S, Landeweert R, Lundstrom U S, Rosling A, et al. The role of fungi in weathering. Front Ecol Environ, 2004, 2: 258.
[36] 伏贝贝. 改造酿酒酵母乙酰辅酶A合成途径及其在香叶醇生产中的应用. 齐鲁工业大学硕士学位论文, 山东济南, 2018.
Fu B B. A Thesis Submitted for the Spplication of the Master’s Degree of Engineering. MS Thesis of Qilu University of Technology, Jinan, Shandong, China, 2018 (in Chinese with English abstract).
[37] 谢探春. Cd-芘复合污染土壤柳树修复及强化技术研究. 南京大学硕士学位论文, 江苏南京, 2019.
Xie T C. Phytoremediation and Enhancement of Willow for Cd and Pyrene Co-contaminated Soils. MS Thesis of Nanjing University, Nanjing, Jiangsu, China, 2019 (in Chinese with English abstract).
[38] 樊扬帆. 外源螯合剂柠檬酸和NTA对苎麻修复重金属Cd污染土壤的研究. 湖南大学硕士学位论文, 湖南长沙, 2015.
Fan Y F. The Effects of Exogenous CA and NTA on Phytoremediation of Cadmium by Boehmeria nivea (L.) Gaud. MS Thesis of Hunan University, Changsha, Hunan, China, 2015 (in Chinese with English abstract).
[39] Shen C, Huang B F, Hu L, Yuan H W, Huang Y Y, Wang Y B, Sun Y F, Li Y, Zhang J R, Xin J L. Comparative transcriptome analysis and Arabidopsis thaliana overexpression reveal key genes associated with cadmium transport and distribution in root of two Capsicum annuum cultivars. J Hazard Mater, 2024, 465: 133365.
[40] Tang L, Mao B G, Li Y K, Lyu Q M, Zhang L P, Chen C Y, He H J, Wang W P, Zeng X F, Shao Y, et al. Knockout of OsNramp 5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep, 2017, 7: 14438.
doi: 10.1038/s41598-017-14832-9 pmid: 29089547
[41] 贺章咪. 不同辣椒品种镉吸收差异及其积累关键基因表达研究. 西南大学硕士学位论文, 重庆, 2020.
He Z M. Difference of Cadmium Absorption Characteristic and Expression of the Key Cadmium Accumulated Genes in Different Pepper Varieties. MS Thesis of Southwest University, Chongqing, China, 2020 (in Chinese with English abstract).
[42] 吴雪. 富氢水缓解小白菜(Brassica chinensis L.)镉胁迫的机理研究. 南京农业大学博士学位论文, 江苏南京, 2020.
Wu X. The Mechanism of Hydrogen-rich Water Alleviating Cadmium Toxicity in Pak Choi. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2020 (in Chinese with English abstract).
[43] 付珊. 水稻ABC转运蛋白OsABCG36的耐镉分子机制研究. 广西大学博士学位论文, 广西南宁, 2019.
Fu S. Molecular Mechanism of ABC Transporter OsABCG36 in Rice Cadmium Tolerance. PhD Dissertation of Guangxi University, Nanning, Guangxi, China, 2019 (in Chinese with English abstract).
[44] Fu S, Lu Y S, Zhang X, Yang G Z, Chao D, Wang Z G, Shi M X, Chen J G, Chao D Y, Li R B, et al. The ABC transporter ABCG36 is required for cadmium tolerance in rice. J Exp Bot, 2019, 70: 5909-5918.
doi: 10.1093/jxb/erz335 pmid: 31328224
[45] Planta R J, Mager W H. The list of cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Yeast, 1998, 14: 471-477.
pmid: 9559554
[46] 高明阳, 杨宣叶, 吴玉湖, 王进千. 核糖体相关质量控制在精微调控蛋白质合成中的作用机制及意义. 微生物学通报, 2024, 51: 2741-2752.
Gao M Y, Yang X Y, Wu Y H, Wang J Q. Mechanism and significance of ribosome-associated quality control in protein synthesis. Microbiol China, 2024, 51: 2741-2752 (in Chinese with English abstract).
[47] Rogalski M, Schöttler M A, Thiele W, Schulze W X, Bock R. Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions. Plant Cell, 2008, 20: 2221-2237.
doi: 10.1105/tpc.108.060392 pmid: 18757552
[48] Berka M, Luklová M, Dufková H, Berková V, Novák J, Saiz-Fernández I, Rashotte A M, Brzobohatý B, Cerný M. Barley root proteome and metabolome in response to cytokinin and abiotic stimuli. Front Plant Sci, 2020, 11: 590337.
[49] Zhang Q Y, Gao M, Wu L W, Wu H, Chen Y C, Wang Y D. Expression network of transcription factors in resistant and susceptible tung trees responding to Fusarium wilt disease. Ind Crops Prod, 2018, 122: 716-725.
[50] Wu X Z, Yan J Y, Qin M Z, Li R Z, Jia T, Liu Z G, Ahmad P, El-Sheikh M A, Yadav K K, Rodríguez-Díaz J M, et al. Comprehensive transcriptome, physiological and biochemical analyses reveal that key role of transcription factor WRKY and plant hormone in responding cadmium stress. J Environ Manag, 2024, 367: 121979.
[51] Xian J P, Wang Y, Niu K J, Ma H L, Ma X. Transcriptional regulation and expression network responding to cadmium stress in a Cd-tolerant perennial grass Poa Pratensis. Chemosphere, 2020, 250: 126158.
[52] Wu X L, Chen Q, Chen L L, Tian F F, Chen X X, Han C Y, Mi J X, Lin X Y, Wan X Q, Jiang B B, et al. A WRKY transcription factor, PyWRKY75, enhanced cadmium accumulation and tolerance in poplar. Ecotoxicol Environ Saf, 2022, 239: 113630.
[53] Sun K L, Wang H Y, Xia Z L. The maize bHLH transcription factor bHLH105 confers manganese tolerance in transgenic tobacco. Plant Sci, 2019, 280: 97-109.
[54] Zhu S J, Shi W J, Jie Y C, Zhou Q M, Song C B. A MYB transcription factor, BnMYB2, cloned from ramie (Boehmeria nivea) is involved in cadmium tolerance and accumulation. PLoS One, 2020, 15: e0233375.
[55] Zhang L Y, Xu Y F, Wang A W, Wu T Y, Guo J L, Shi G Y, Tian B M, Wei F, Cao G Q. Integrated physiological and transcriptomic analysis reveals the involvement of photosynthesis and redox homeostasis in response of Arundo donax to low and high nitrogen supply. Ind Crops Prod, 2024, 221: 119377.
[1] MENG Xiang-Yu, DIAO Deng-Chao, LIU Ya-Rui, LI Yun-Li, SUN Yu-Chen, WU Wei, ZHAO Wen, WANG Yu, WU Jian-Hui, LI Chun-Lian, ZENG Qing-Dong, HAN De-Jun, ZHENG Wei-Jun. Genetic analysis of high yield and yield stability characteristics of new wheat variety Xinong 877 [J]. Acta Agronomica Sinica, 2025, 51(5): 1261-1276.
[2] WANG Jia-Jie, WANG Zheng-Nan, BATOOL Maria, WANG Wang-Nian, WEN Jing, REN Chang-Zhong, HE Feng, WU You-You, XU Zheng-Hua, WANG Jing, KUAI Jie, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Comparison of physiological characteristics of salt and alkali tolerance between rapeseed and wheat [J]. Acta Agronomica Sinica, 2025, 51(5): 1215-1229.
[3] WANG Dong, WANG Sen, SHANG Li, FENG Hao-Wei, ZHANG Yong-Qiao, CUI Jia-Ming, LI Shuang, ZHANG Jia-Cong, CHE Huan. Effect of supplementary irrigation on winter wheat yield and water use efficiency in semi humid areas of the Loess Plateau [J]. Acta Agronomica Sinica, 2025, 51(5): 1312-1325.
[4] CHENG Hong-Na, QIN Dan-Dan, XU Fu-Chao, XU Qing, PENG Yan-Chun, SUN Long-Qing, XU Le, GUO Ying, YANG Xin-Quan, XU De-Ze, DONG Jing. Comparative analysis of metabolomics of colored hulless barley and colored wheat grains [J]. Acta Agronomica Sinica, 2025, 51(4): 932-942.
[5] LI Hui-Min, XING Zhi-Peng, ZHANG Hai-Peng, WEI Hai-Yan, ZHANG Hong-Cheng, LI Guang-Yan. Application of chemical regulators and other cultivation measures in lodging resistance and high-yield cultivation of wheat [J]. Acta Agronomica Sinica, 2025, 51(4): 847-862.
[6] LI Pei-Hua, LI Jie, MENG Xiang-Yu, SUN Yu-Chen, FENG Yong-Jia, LI Yun-Li, DIAO Deng-Chao, ZHAO Wen, WU Wei, HAN De-Jun, ZHANG Song-Wu, ZHENG Wei-Jun. Evaluation of stress tolerance and physiological response of cold-type wheat under heat stress [J]. Acta Agronomica Sinica, 2025, 51(4): 1118-1130.
[7] LI Qiao, YE Yang-Chun, CHANG Xu-Hong, WANG De-Mei, WANG Yan-Jie, YANG Yu-Shuang, MA Rui-Qi, ZHAO Guang-Cai, CAI Rui-Guo, ZHANG Min, LIU Xi-Wei. Effects of high temperature and drought stresses on photosynthetic characteristics and yield of winter wheat after anthesis [J]. Acta Agronomica Sinica, 2025, 51(4): 1077-1090.
[8] WANG Jiao, BAI Hai-Xia, HAN Yu-Yan, LIANG Hui, FENG Ya-Nan, ZHANG Dong-Sheng, LI Ping, ZONG Yu-Zheng, SHI Xin-Rui, HAO Xing-Yu. Effects of elevated CO2 concentration, increased temperature and their interaction on the carbon and nitrogen metabolism in Liangxing 99 winter wheat leaves [J]. Acta Agronomica Sinica, 2025, 51(4): 1061-1076.
[9] ZHANG Heng, FENG Ya-Lan, TIAN Wen-Zhong, GUO Bin-Bin, ZHANG Jun, MA Chao. Identification of TaSnRK gene family and expression analysis under localized root zone drought in wheat [J]. Acta Agronomica Sinica, 2025, 51(3): 632-649.
[10] ZHANG Jin-Ze, ZHOU Qing-Guo, YANG Xu, WANG Qian, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, YU Kun-Jiang, TIAN En-Tang. Analysis of genes associated with expression characteristics and high resistance in response to Sclerotinia sclerotiorum infection in Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(3): 621-631.
[11] ZHAN Zong-Bing, JIN Qi-Feng, LIU Di, LYU Ying-Chun, GUO Ying, ZHANG Xue-Ting, HU Meng-Xia, WANG Shang, YANG Fang-Ping. Molecular characterization and evaluation of important traits of landrace wheat Laomangmai in Gansu province, China [J]. Acta Agronomica Sinica, 2025, 51(3): 609-620.
[12] YANG Fang-Ping, GUO Ying, TIAN Yuan-Yuan, XU Yu-Feng, WANG Lan-Lan, BAI Bin, ZHAN Zong-Bing, ZHANG Xue-Ting, XU Yin-Ping, LIU Jin-Dong. Effect of vernalization and photoperiod genes and evaluation of cold tolerance for wheat landraces from Gansu province, China [J]. Acta Agronomica Sinica, 2025, 51(2): 370-382.
[13] LIANG Miao, LI Pan, ZHAO Lian-Hao, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, CHAI Qiang, YIN Wen. Effect of soil conditioner and slow-release nitrogen fertilizer on dry matter accumulation and yield of wheat [J]. Acta Agronomica Sinica, 2025, 51(2): 470-484.
[14] WANG Peng-Bo, ZHANG Dong-Xia, QIAO Chang-Chang, HUANG Ming, WANG He-Zheng. Effects of straw returning and phosphorus application on soil enzyme activity and yield formation of wheat in dry land of western Henan, China [J]. Acta Agronomica Sinica, 2025, 51(2): 534-547.
[15] ZHANG Jun, HU Chuan, ZHOU Qi-Hui, REN Kai-Ming, DONG Shi-Yan, LIU Ao-Han, WU Jin-Zhi, HUANG Ming, LI You-Jun. Effects of nitrogen reduction and organic fertilizer substitution on dry matter accumulation, translocation, distribution, and yield of dryland winter wheat [J]. Acta Agronomica Sinica, 2025, 51(1): 207-220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!