Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (6): 1676-1689.doi: 10.3724/SP.J.1006.2025.44126

• RESEARCH NOTES • Previous Articles     Next Articles

Exploring the prediction of planting suitability distribution and quality zoning of Angelicae publicentis Radix based on MaxEnt model and HPLC

HU Chao-Gui(), DONG Peng-Bin, WANG Chen-Yue, LI Qian()   

  1. College of Agronomy, Gansu Agricultural University / State Key Laboratory of Aridland Crop Science, Lanzhou 730070, Gansu, China
  • Received:2024-07-30 Accepted:2025-01-23 Online:2025-06-12 Published:2025-02-17
  • Contact: *E-mail: liqian1984@gsau.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(31860102);the Longyuan Youth Innovation and Entrepreneurship Talent Project(GSRC-2023-1-4)

Abstract:

Angelicae publicentis Radix (Duhuo), a traditional Chinese medicine (TCM) and an economically important crop, presents challenges in quality control due to its wide geographic distribution. In this study, the MaxEnt model was employed to predict the current and future potential distribution of Duhuo in China, elucidating how climate change influences its spatial distribution patterns. Furthermore, High-Performance Liquid Chromatography (HPLC) combined with ArcGIS spatial analysis was applied to investigate the key environmental factors affecting coumarin accumulation and to identify optimal cultivation zones. The results revealed that the primary environmental factors influencing the current distribution of Duhuo include the annual temperature range, minimum temperature of the coldest month, solar radiation in May, mean temperature of the coldest quarter, and precipitation in the warmest quarter. The most suitable planting regions are primarily located in monsoon-influenced areas, including central Sichuan (Aba and Ganzi), southern Gansu (Pingliang), southern Shaanxi (Qinling), southern Hubei (Yichang), and southern Yunnan. Climate change projections suggest that the centers of suitable habitats will shift northward and to higher latitudes, resulting in a reduction in suitable areas. Coumarin content appears to decline gradually from high-suitability regions to low-suitability regions, possibly influenced by precipitation patterns. The optimal areas for cultivating high-quality Duhuo are concentrated in central Sichuan, southern Gansu, Hunan, Henan, southern Hubei, andsouthern Anhui, aligning closely with current suitable planting regions, although these areas are also expected to shrink in the future. This study provides valuable insights for optimizing Duhuo cultivation areas, enhancing quality control, increasing economic benefits, and promoting industrial development.

Key words: Angelica publicen Maxin f. biserrata Shan et Yuan, MaxEnt model, HPLC, climatic response, quality evaluation

Fig. 1

Distribution points and environmental variables used to evaluate the cultivation suitability in Duhuo a: Distribution points of Duhuo in China and sampling points. This map is based on the standard map downloaded from the National Platform for Common Geospatial Information Services with the approval number GS (2024) 0650, and the boundary of the base map is not modified. The satellite map data has been sourced from Amap. b: correlations between environmental variables. bio1: annual mean temperature; bio2: mean diurnal range; bio3: isothermality; bio4: temperature seasonality; bio5: max. temperature of the warmest month; bio6: min. temperature of the coldest month; bio7: temperature annual range; bio8: mean temperature of the wettest quarter; bio9: mean temperature of the driest quarter; bio10: mean temperature of the warmest quarter; bio11: mean temperature of the coldest quarter; bio12: annual precipitation; bio13: precipitation of the wettest month; bio14: precipitation of the driest month; bio15: precipitation seasonality; bio16: precipitation of the wettest quarter; bio17: precipitation of the driest quarter; bio18: precipitation of the warmest quarter; bio19: precipitation of the coldest quarter; srad 1-12: solar radiation form January to December; t_ph: topsoil pH; t_cec: topsoil cation exchange capacity; s_cec: soil cation exchange capacity; t_oc: topsoil organic carbon; s_oc: soil organic carbon; awc_class: AWC range; elev: elevation."

Table S1

Ecological factors variable information"

环境变量Environment variables 编号Abbreviation 单位Unit
年平均气温Annual mean temperature bio1
平均昼夜范围Mean diurnal range bio2
等温 (bio2/bio7) (×100) Isothermality bio3 1
温度季节性(标准偏差 ×100) Temperature seasonality bio4 1
最热月份的最高温度Max. temperature of warmest month bio5
最冷月份的最低温度Min. temperature of coldest month bio6
年温度范围 (bio5-bio6) Temperature annual range bio7
最湿季度的平均温度Mean temperature of wettest quarter bio8
最干燥季度的平均温度Mean temperature of driest quarter bio9
最热季度的平均温度Mean temperature of warmest quarter bio10
最冷季度的平均温度Mean temperature of coldest quarter bio11
年降水量Annual precipitation bio12 mm
最湿月份的降水Precipitation of wettest month bio13 mm
最干燥月份的降水Precipitation of driest month bio14 mm
降水季节性(变异系数) Precipitation seasonality bio15 mm
最湿季降水Precipitation of wettest quarter bio16 mm
最干燥季度的降水Precipitation of driest quarter bio17 mm
最热季降水Precipitation of warmest quarter bio18 mm
最冷季降水Precipitation of coldest quarter bio19 mm
太阳辐射Solar radiation srad(1-12) kJ m−2 day−1
表土pH Topsoil pH t_pH 1
表土阳离子交换能力Topsoil cation exchange capacity t_cec cmol kg−1
土壤阳离子交换能力Soil cation exchange capacity s_cec cmol kg−1
表层土有机碳Topsoil organic carbon t_oc %
土壤有机碳Soil organic carbon s_oc %
土壤有效持水量AWC range awc_class 1
高程Altitude elev m

Table 1

Description of environmental variables used in the MaxEnt model"

环境变量 Environmental variables 缩写Abbreviation 单位Unit
最冷月最低气温 Minimum temperature of the coldest month bio6
年温度变化范围 Annual temperature range bio7
最冷季度平均气温 Mean temperature of the coldest quarter bio11
年降水量 Annual precipitation bio12 mm
最暖季降水量 Precipitation of the warmest quarter bio18 mm
太阳辐射(5月和8月) Solar radiation (May and August) srad (5, 8) kJ m-2 d-1
土壤表土pH Soil pH s_ph 1
海拔 Elevation elev m

Table S2

Linear regression equation of coumarin standard solution"

标准品 Standard substance 回归方程 Regression equation 回归系数R2
二氢山芹醇Columbianetin y = 25,875,890.24x + 15,200.61 0.9991
补骨脂素Psoralen y = 26,790,698.17x - 127,507.32 0.9992
花椒毒素Methoxsalen y = 19,314,770.12x - 40,564.94 0.9991
蛇床子素Osthole y = 26,116,722.56x - 67,290.35 1.0000
异欧前胡素Isoimperatorin y = 48,467,223.78x - 373,156.79 0.9992
二氢欧山芹醇当归酸酯Columbianadin y = 26,273,935.36x - 31,363.08 0.9998

Table S3

HPLC method validation (%)"

标准品
Standard substance
精密度测试
Precision test
重复性测试
Repeatability test
稳定性测试
Stability test
日内
Intra-day RSD
日间
Inter-day RSD
RSD RSD
二氢山芹醇Columbianetin 0.23 1.28 0.45 0.40
补骨脂素Psoralen 0.54 1.30 1.20 0.80
花椒毒素Methoxsalen 0.70 1.47 0.56 1.20
蛇床子素Osthole 1.10 1.80 1.10 1.60
异欧前胡素Isoimperatorin 0.68 1.70 0.60 1.10
二氢欧山芹醇当归酸酯Columbianadin 0.77 0.89 0.70 1.50

Fig. 2

Accuracy assessment of MaxEnt model and important environmental variables affecting distribution Abbreviations are the same as those given in Fig. 1. a: receiver operating characteristic curve of modelling the cultivation suitability of Duhuo based on Maxent; b: jackknife map of environmental variables affecting the distribution of Duhuo; c: response curves of important environmental factors in the distribution model of Duhuo."

Table S4

Contributions of the environmental variables to the Maxent model"

环境变量
Variable
贡献值
Contribution (%)
排列重要性
Permutation importance (%)
srad5 50.5 11.1
bio7 16.3 16.7
bio6 9.6 39.1
bio11 6.5 2.5
elev 5.5 7.4
bio18 5.5 11.8
srad8 3.6 6.9
s_ph 1.3 2.2
bio12 1.1 2.4

Fig. 3

Suitable distribution and proportion of planting under current and future climate conditions This map is based on the standard map downloaded from the National Platform for Common Geospatial Information Services with the approval number GS (2024) 0650 and the boundary of the base map is not modified."

Table 2

Potential distribution areas of Duhuo over different periods"

适宜性
Suitability
适宜区域面积 Suitable area (×104 km2)
当前
Current
2041-2060 2081-2100
SSP1-2.6 SSP3-7.0 SSP5-8.5 SSP1-2.6 SSP3-7.0 SSP5-8.5
不适宜性No suitability 499.002 520.738 525.865 524.415 521.271 524.813 512.146
低适宜性Low suitability 128.962 133.283 140.908 130.554 123.625 131.861 145.012
中适宜性Medium suitability 148.523 132.167 126.462 140.615 134.670 134.481 137.194
高适宜性High suitability 44.589 34.887 27.840 25.491 41.509 29.920 26.722

Fig. 4

Changes in suitable distribution patterns for planting between 2050s and 2090s This map is based on the standard map downloaded from the National Platform for Common Geospatial Information Services with the approval number GS (2024) 0650, and the boundary of the base map is not modified."

Fig. 5

Migration routes and distances of suitable distribution centres for planting under current and future climate scenarios a: the arrows indicate the migration routes and directions of suitable distribution centre for planting under future climate scenarios. This map is based on the standard map downloaded from the National Platform for Common Geospatial Information Services with the approval number GS (2024) 0650, and the boundary of the base map is not modified. b: the bar chart represents the migration distance for different scenarios and years. The marked areas correspond to: (A) current, (B) SSP50126, (C) SSP90126, (D) SSP50370, (E) SSP90370, (F) SSP50585, and (G) SSP90585. Different letters represent different concentration paths in different ages, such as SSP50126 represents 2050s concentration path SSP1-2.6."

Fig. 6

Determination of coumarins content in Duhuo from different areas and its relationship with environmental variables a: high-performance liquid chromatography fingerprint standard of six coumarins in different regions; the labels a-f represents columbianetin, psoralen, methoxsalen, osthole, isoimperatorin, and columbianadin, respectively. b: correlation between coumarins and environmental factors. *: P < 0.05; **: P < 0.01."

Table S5

Variations in the content of six coumarins in Duhuo from different regions (mg g?1)"

产地
Origin
二氢山芹醇
Columbianetin
补骨脂素
Psoralen
花椒毒素
Methoxsalen
蛇床子素
Osthole
异欧前胡素
Isoimperatorin
二氢欧山芹醇当归酸酯
Columbianadin
湖北宣恩Xuan’en, Hubei 1.05 1.23 8.46 14.71 1.04 1.07
甘肃陇西Longxi, Gansu 0.06 0.27 0.31 2.65 0.35 0.09
甘肃渭源Weiyuan, Gansu 0.11 0.32 0.71 2.84 0.43 0.09
四川阿坝Aba, Sichuan 0.35 0.55 1.18 0.41 0.31 0.70
甘肃华亭Huating, Gansu 0.65 0.84 6.44 8.17 1.10 0.68
四川甘孜Ganzi, Sichuan 0.23 0.43 1.30 0.21 0.31 0.86
湖北五峰Wufeng, Hubei 1.14 1.31 6.71 4.20 2.50 0.49
重庆巫溪Wuxi, Chongqing 0.59 0.78 5.36 7.64 0.96 0.89
重庆城口Chengkou, Chongqing 0.62 0.81 5.61 7.68 0.87 0.73
云南昆明Kunming, Yunnan 0.58 0.78 4.93 6.21 1.65 0.30
陕西秦岭Qinling, Shaanxi 0.63 0.82 6.26 9.51 1.31 0.35
贵州Guizhou 0.32 0.52 7.13 3.55 0.74 0.84

Table S6

Sample point information"

物种
Species
采集点
Location
经度
Longitude (N)
纬度
Latitude (E)
适宜性
Suitability
独活 Angelica pubescens roots 湖北宣恩Xuan’en, Hubei 109.9276° 30.132° 高适宜 High Suitability
独活Angelica pubescens roots 甘肃陇西Longxi, Gansu 104.6367° 35.0032° 低适宜Low Suitability
独活Angelica pubescens roots 甘肃渭源Weiyuan, Gansu 104.2193° 35.1342° 低适宜Low Suitability
独活Angelica pubescens roots 四川阿坝Aba, Sichuan 102.6315° 31.4912° 低适宜Low Suitability
独活Angelica pubescens roots 甘肃华亭Huating, Gansu 106.6311° 35.2049° 中适宜Medium suitability
独活Angelica pubescens roots 四川甘孜Ganzi, Sichuan 102.3771° 30.9782° 低适宜Low Suitability
独活Angelica pubescens roots 湖北五峰Wufeng, Hubei 111.2102° 30.4716° 高适宜High Suitability
独活Angelica pubescens roots 重庆巫溪Wuxi, Chongqing 109.7101° 31.3755° 高适宜High Suitability
独活Angelica pubescens roots 重庆城口Chengkou, Chongqing 109.0117° 31.8126° 高适宜High Suitability
独活Angelica pubescens roots 云南昆明Kunming, Yunnan 100.8413° 24.4458° 中适宜Medium suitability
独活Angelica pubescens roots 陕西秦岭Qinling, Shaanxi 107.8164° 33.3017° 中适宜Medium suitability
独活Angelica pubescens roots 贵州Guizhou 106.0887° 25.7503° 中适宜Medium suitability

Fig. 7

Evaluation of high quality suitability of Duhuo a: average content of six different coumarins in regions varying in suitability; b: current distribution of high-quality suitable cultivation areas in China; c: predicted distribution of high-quality suitable cultivation areas in the future. This map is based on the standard map downloaded from the National Platform for Common Geospatial Information Services with the approval number GS (2024) 0650 and the boundary of the base map is not modified."

Table S7

Changes in the area of high-quality suitable areas of Duhuo in the future"

面积
Area
时期Period
当前
Current
2050s (2041-2060) 2090s (2081-2100)
SSP1-2.6 SSP3-7.0 SSP5-8.5 SSP1-2.6 SSP3-7.0 SSP5-8.5
适宜区域面积Suitable area (×104 km2) 457.25460 394.04668 358.40292 300.65092 371.18309 344.24062 325.56602
[1] Yuan Q X, Zhang J, Xiao C L, Harqin C, Ma M Y, Long T, Li Z H, Yang Y L, Liu J K, Zhao L Y. Structural characterization of a low-molecular-weight polysaccharide from Angelica pubescens Maxim. f. biserrata Shan et Yuan root and evaluation of its antioxidant activity. Carbohyd Polym, 2020, 236: 116047.
[2] 罗梅, 赵琦, 杨梅, 李开杨, 谢龙. 独活考证及临床应用. 微量元素与健康研究, 2024, 41(23): 31-33.
Luo M, Zhao Q, Yang M, Li K Y, Xie L. Textual research and clinical application of Angelicae pubescentis Radix. Stud Trace Elem Health, 2024, 41(23): 31-33 (in Chinese with English abstract).
[3] Guo Q Q, Du G C, Li Y X, Liang C Y, Wang C, Zhang Y N, Li R G. Nematotoxic coumarins from Angelica pubescens Maxim. f. biserrata Shan et Yuan roots and their physiological effects on Bursaphelenchus xylophilus. J Nematol, 2018, 50: 559-568.
[4] 周璐丽, 曾建国. 独活化学成分及药理活性研究进展. 中国现代中药, 2019, 21: 1739-1748.
Zhou L L, Zeng J G.Research advances on chemical constituents and pharmacological effects of Angelica pubescens. Mod Chin Med, 2019, 21: 1739-1748 (in Chinese with English abstract).
[5] 郭晓亮, 林先明, 郭杰, 游景茂. 独活研究现状与展望. 安徽农业科学, 2014, 42: 11673-11674.
Guo X L, Lin X M, Guo J, You J M. The research status and prospect of Angelicae pubescentis Radix. J Anhui Agric Sci, 2014, 42: 11673-11674.
[6] 李欠, 姬党通, 高慧. 基于质谱成像技术的独活鲜根中香豆素类成分的空间分布特征研究. 中草药, 2023, 54: 3438-3445.
Li Q, Ji D T, Gao H. Spatial distribution of coumarins in Angelica pubescens fresh roots by MALDI-MSI. Chin Trad Herb Drugs, 2023, 54: 3438-3445 (in Chinese with English abstract).
[7] Yu K T, Little D, Plumb R, Smith B. High-throughput quantification for a drug mixture in rat plasma-a comparison of Ultra Performance liquid chromatography/tandem mass spectrometry with high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom, 2006, 20: 544-552.
[8] Yang X Y, Liu Y L, Hou A J, Yang Y, Tian X, He L Y. Systematic review for geo-authentic Lonicerae japonicae Flos. Front Med, 2017, 11: 203-213.
[9] 陈颖, 杨飞燕, 周喆, 陈靠山, 柳春燕. 高效液相色谱法同时测定独活中8种香豆素类化合物的含量. 中药新药与临床药理, 2022, 33(3): 380-385.
Chen Y, Yang F Y, Zhou Z, Chen K S, Liu C Y. Simultaneous determination of 8 coumarins in Angelicae pubescentis Radix by HPLC. Trad Chin Drug Res Clin Pharmacol, 2022, 33(3): 380-385 (in Chinese with English abstract).
[10] 舒义家. 桂北高山独活林下种植技术. 特种经济动植物, 2023, 26(9): 100-102.
Shu Y J. Planting techniques of Angelica pubescens in alpine areas of northern Guangxi. Spec Econ Anim Plants, 2023, 26(9): 100-102 (in Chinese).
[11] 张治存. 亳州独活引种栽培技术研究. 农业科技与信息, 2019, (21): 28-31.
Zhang Z C. Study on introduction and cultivation techniques of Radix Angelicae pubescentis in Bozhou. Agric Sci Technol Inf, 2019, (21): 28-31 (in Chinese).
[12] 杜肖, 王亚鹏, 钱锦秀, 杨洪军, 刘晖晖, 詹志来. 经典名方中独活与羌活的本草考证. 中国实验方剂学杂志, 2023, 29(5): 68-83.
Du X, Wang Y P, Qian J X, Yang H J, Liu H H, Zhan Z L. Herbal textual research on Angelicae pubescentis Radix and Notopterygii rhizoma et Radix in famous classical formulas. Chin J Exp Trad Med Formul, 2023, 29(5): 68-83 (in Chinese with English abstract).
[13] 顿珠次仁, 朱根华, 邹志琴, 严志宏, 黄秀珍. 液-质联用测定不同产地独活中蛇床子素和欧前胡素的含量. 中药新药与临床药理, 2015, 26(1): 105-108.
Dunzhuciren, Zhu G H, Zou Z Q, Yan Z H, Huang X Z. Determination of osthole and imperatorin in Angelicae pubescentis Radix from different habitats by HPLC-MS/MS. Trad Chin Drug Res Clin Pharmacol, 2015, 26(1): 105-108 (in Chinese with English abstract).
[14] 雷军成, 徐海根, 吴军, 关庆伟, 丁晖, 崔鹏. 气候变化情景下物种适宜生境预测研究进展. 四川动物, 2015, 34: 794-800.
Lei J C, Xu H G, Wu J, Guan Q W, Ding H, Cui P. Advance in predicting the suitable habitat of species under future climate change. Sichuan J Zool, 2015, 34: 794-800 (in Chinese with English abstract).
[15] 王露, 赵炯超, 王艺璇, 米艳华, 张宁怡, 赵明宇, 褚庆全. 三七种植适宜区的分布及其对气候变化的响应. 作物学报, 2024, 50: 2860-2869.
doi: 10.3724/SP.J.1006.2024.44005
Wang L, Zhao J C, Wang Y X, Mi Y H, Zhang N Y, Zhao M Y, Chu Q Q. Spatial distribution of cultivation suitable area for Panax notoginseng and its response to climate change. Acta Agron Sin, 2024, 50: 2860-2869 (in Chinese with English abstract).
[16] Pearson R G, Raxworthy C J, Nakamura M, Townsend Peterson A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr, 2007, 34: 102-117.
[17] Walter M, Brugger K, Rubel F. Usutu virus induced mass mortalities of songbirds in central Europe: are habitat models suitable to predict dead birds in unsampled regions? Prev Vet Med, 2018, 159: 162-170.
doi: S0167-5877(18)30486-0 pmid: 30314779
[18] Hernandez P A, Graham C H, Master L L, Albert D L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 2006, 29: 773-785.
[19] Venne S, Currie D J. Can habitat suitability estimated from MaxEnt predict colonizations and extinctions? Divers Dis, 2021, 27: 873-886.
[20] 张惠惠, 孟祥霄, 林余霖, 陈士林, 黄林芳. 基于GMPGIS系统和MaxEnt模型预测人参全球潜在生长区域. 中国中药杂志, 2023, 48: 4959-4966.
Zhang H H, Meng X X, Lin Y L, Chen S L, Huang L F. Prediction of global potential growth areas for Panax ginseng based on GMPGIS system and MaxEnt model. China J Chin Mater Med, 2023, 48: 4959-4966 (in Chinese with English abstract).
[21] Qaderi M M, Martel A B, Strugnell C A. Environmental factors regulate plant secondary metabolites. Plants (Basel), 2023, 12: 447-447.
[22] Wan G Z, Wang L, Jin L, Chen J. Evaluation of environmental factors affecting the quality of Codonopsis pilosula based on chromatographic fingerprint and MaxEnt model. Ind Crops Prod, 2021, 170: 113783.
[23] Wang Y, Zhang L, Du Z X, Pei J, Huang L F. Chemical diversity and prediction of potential cultivation areas of Cistanche herbs. Sci Rep, 2019, 9: 19737-19750.
doi: 10.1038/s41598-019-56379-x pmid: 31875048
[24] Xu N, Meng F Y, Zhou G F, Li Y F, Wang B, Lu H. Assessing the suitable cultivation areas for Scutellaria baicalensis in China using the Maxent model and multiple linear regression. Biochem Syst Ecol, 2020, 90: 104052.
[25] Zhu S D, Guo L P, Cui Y J, Xiao R L, Yu Z X, Jin Y, Fu R Q, Zhang J H, Xu T R, Chen J B, et al. Quality suitability modeling of volatile oil in Chinese materia medica-based on maximum entropy and independent weight coefficient method: case studies of Atractylodes lancea, Angelica sinensis, Curcuma longa and Atractylodes macrocephala. Ind Crops Prod, 2019, 142: 111807.
[26] Wang Z X, Jia Y J, Li P P, Tang Z S, Guo Y N, Wen L X, Yu H Q, Cui F, Hu F D. Study on environmental factors affecting the quality of Codonopsis Radix based on MaxEnt model and all-in-one functional factor. Sci Rep, 2023, 13: 20726.
[27] Du J L, Lu X, Geng Z P, Yuan Y Y, Liu Y, Li J L, Wang M J, Wang J L. Metabolites changes of Eucommia ulmoides Olive samaras from different regions and cultivars. Ind Crops Prod, 2022, 189: 115824.
[28] He P, Guo L F, Liu Y Z, Meng F Y, Peng C. Spatial dynamic simulation of important cash crops based on phenology with Scutellaria baicalensis Georgi as an example. Eur J Agron, 2023, 144: 126748.
[29] Yang S H, Cui X F. Building regional sustainable development scenarios with the SSP framework. Sustainability, 2019, 11: 5712.
[30] Ab Lah N Z, Yusop Z, Hashim M, Mohd Salim J, Numata S. Predicting the habitat suitability of Melaleuca cajuputi based on the MaxEnt species distribution model. Forests, 2021, 12: 1449.
[31] Phillips S J, Dudík M. Modeling of species distributions with maxent: new extensions and a comprehensive evaluation. Ecography, 2008, 31: 161-175.
[32] 薄晓智, 石晓宇, 赵炯超, 林倩, 史梦霞, 商蒙非, 褚庆全. 基于MaxEnt模型的中国裸燕麦种植气候适宜性评价. 中国农业大学学报, 2021, 26(9): 1-10.
Bo X Z, Shi X Y, Zhao J C, Lin Q, Shi M X, Shang M F, Chu Q Q.Climatic suitability of naked oat (Avena nuda L.) planting in China based on MaxEnt model. J China Agric Univ, 2021, 26(9): 1-10 (in Chinese with English abstract).
[33] 张雪可, 张虹, 章鹏飞, 秦委, 刘守金, 彭代银, 李雷. 湖北黄精潜在分布区预测及生态适宜性研究. 中国农业科技导报, 2021, 23(8): 185-192.
Zhang X K, Zhang H, Zhang P F, Qin W, Liu S J, Peng D Y, Li L.Prediction of the potential distributions and ecological suitability of Polygonatum zanlanscianense pamp. J Agric Sci Technol, 2021, 23(8): 185-192 (in Chinese with English abstract).
[34] 张铁军. 中药质量认识与质量评价. 中草药, 2011, 42(1): 1-9.
Zhang T J. Realization and evaluation of Chinese materia medica quality. Chin Trad Herb Drugs, 2011, 42(1): 1-9 (in Chinese with English abstract).
[35] Zhan P, Wang F Y, Xia P G, Zhao G H, Wei M T, Wei F G, Han R L. Assessment of suitable cultivation region for Panax notoginseng under different climatic conditions using MaxEnt model and high-performance liquid chromatography in China. Ind Crops Prod, 2022, 176: 114416.
[36] 董凯, 梁世君, 柳喜琴, 武小龙, 王育峰. 独活的育苗与栽培技术措施研究. 河北农业, 2023, (3): 72-74.
Dong K, Liang S J, Liu X Q, Wu X L, Wang Y F.Study on seedling raising and cultivation techniques of Radix Angelicae Pubescentis. Hebei Agric, 2023, (3): 72-74 (in Chinese).
[37] Amrit K, Pandey R P, Mishra S K, Daradur M. Relationship of drought frequency and severity with range of annual temperature variation. Nat Hazards, 2018, 92: 1199-1210.
[38] Walia S, Rathore S, Kumar R. Elucidating the mechanisms, responses and future prospects of medicinal and aromatic plants to elevated CO2 and elevated temperature. J Appl Res Med Aromat Plants, 2022, 26: 100365.
[39] 郭巧生. 药用植物栽培学. 北京: 高等教育出版社, 2009. pp 29-30.
Guo Q S. Medicinal Plant Cultivation. Beijing: Higher Education Press, 2009. pp 29-30 (in Chinese).
[40] Shaban M, Ghehsareh Ardestani E, Ebrahimi A, Borhani M. Climate change impacts on optimal habitat of Stachys inflata medicinal plant in central Iran. Sci Rep, 2023, 13: 6580.
doi: 10.1038/s41598-023-33660-8 pmid: 37085511
[41] Zhang R, Zhang M X, Yan Y M, Chen Y, Jiang L L, Wei X X, Zhang X B, Li H T, Li M H. Promoting the development of Astragalus mongholicus bunge industry in Guyang county (China) based on MaxEnt and remote sensing. Front Plant Sci, 2022, 13: 908114.
[42] 赵泽芳, 卫海燕, 郭彦龙, 顾蔚. 人参潜在地理分布以及气候变化对其影响预测. 应用生态学报, 2016, 27: 3607-3615.
doi: 10.13287/j.1001-9332.201611.040
Zhao Z F, Wei H Y, Guo Y L, Gu W. Potential distribution of Panax ginseng and its predicted responses to climate change. Chin J Appl Ecol, 2016, 27: 3607-3615 (in Chinese with English abstract).
[43] 张敏, 阳桂平, 杜忠, 赵海茗, 蒋紫艳, 肖艳春, 李吉文. 食用独活林下人工栽培关键技术. 现代农业科技, 2022, (6): 45-47.
Zhang M, Yang G P, Du Z, Zhao H M, Jiang Z Y, Xiao Y C, Li J W. Key techniques of artificial cultivation under edible Angelicae pubescentis Radix forest. Mod Agric Sci Technol, 2022, (6): 45-47 (in Chinese).
[44] 段珍, 吴凡, 闫启, 张吉宇. 植物香豆素生物合成途径及关键酶基因研究进展. 草业学报, 2022, 31: 217-228.
doi: 10.11686/cyxb2020485
Duan Z, Wu F, Yan Q, Zhang J Y. Research progress on plant coumarin biosynthesis pathway and the genes encoding the key enzymes. Acta Pratac Sin, 2022, 31: 217-228 (in Chinese with English abstract).
[45] 朱文娟, 李欠, 王爱敏, 许美玲, 陈垣. 不同商品独活的蛇床子素含量测定. 中兽医医药杂志, 2019, 38(4): 34-37.
Zhu W J, Li Q, Wang A M, Xu M L, Chen Y. Contents determination of osthole of different Angelicae pubescentis Radix products. J Trad Chin Vet Med, 2019, 38(4): 34-37 (in Chinese with English abstract).
[46] 韩凤, 林茂祥, 罗川, 肖忠, 任星宇, 谭秋生, 章文伟. 不同产地独活及其混伪品的质量差异性分析. 西南师范大学学报(自然科学版), 2019, 44(10): 34-39.
Han F, Lin M X, Luo C, Xiao Z, Ren X Y, Tan Q S, Zhang W W. On quality diversity analysis of Angelica pubescens f. biserrata in different habitats and its adulterants. J Southwest China Norm Univ (Nat Sci Edn), 2019, 44(10): 34-39 (in Chinese with English abstract).
[47] Mahajan M, Kuiry R, Pal K K. Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. J Appl Res Med Aromat Plants, 2020, 18: 100255.
[48] Zandalinas S I, Sengupta S, Fritschi F B, Azad R K, Nechushtai R, Mittler R. The impact of multifactorial stress combination on plant growth and survival. New Phytol, 2021, 230: 1034-1048.
doi: 10.1111/nph.17232 pmid: 33496342
[49] Mikkelsen B L, Olsen C E, Lyngkjær M F. Accumulation of secondary metabolites in healthy and diseased barley, grown under future climate levels of CO2, ozone and temperature. Phytochemistry, 2015, 118: 162-173.
doi: 10.1016/j.phytochem.2015.07.007 pmid: 26343414
[50] Gerganova M, Popova A V, Stanoeva D, Velitchkova M. Tomato plants acclimate better to elevated temperature and high light than to treatment with each factor separately. Plant Physiol Biochem, 2016, 104: 234-241.
[51] 罗丹丹, 王传宽, 金鹰. 植物水分调节对策:等水与非等水行为. 植物生态学报, 2017, 41: 1020-1032.
doi: 10.17521/cjpe.2016.0366
Luo D D, Wang C K, Jin Y. Plant water-regulation strategies: isohydric versus anisohydric behavior. Chin J Plant Ecol, 2017, 41: 1020-1032 (in Chinese with English abstract).
[52] 莫斌, 李峰, 林若兰.高标准农田建设水土保持工程作用探讨. 水土保持应用技术, 2024, (5): 54-56.
Mo B, Li F, Lin R L. Discussion on the role of soil and water conservation engineering in high-standard farmland construction. Technol Soil Water Conserv, 2024, (5): 54-56 (in Chinese).
[53] 段辉良, 曹福祥. 中国亚热带南岭山地气候变化特点及趋势. 中南林业科技大学学报, 2012, 32(9): 110-113.
Duan H L, Cao F X. Characteristics and trends of climate change of Chinese subtropical Nanling Mountain. J Cent South Univ For Technol, 2012, 32(9): 110-113 (in Chinese with English abstract).
[54] 张国斌, 张勃, 王东, 季定民, 王国强. 近14年西南地区植被季节变化及与气候关系. 遥感信息, 2016, 31(1): 89-95.
Zhang G B, Zhang B, Wang D, Ji D M, Wang G Q. Seasonal changes of vegetation in south Western China and its relation to climate factors in recent 14 years. Remote Sens Inf, 2016, 31(1): 89-95 (in Chinese with English abstract).
[55] 陈隆勋, 朱文琴, 王文, 周秀骥, 李维亮. 中国近45年来气候变化的研究. 气象学报, 1998, 56(3): 257-271.
Chen L X, Zhu W Q, Wang W, Zhou X J, Li W L. Studies on climate change in China in recent 45 years. Acta Meteor Sin, 1998, 56(3): 257-271 (in Chinese).
[56] Liu L, Guan L L, Zhao H X, Huang Y, Mou Q Y, Liu K, Chen T T, Wang X Y, Zhang Y, Wei B, et al. Modeling habitat suitability of Houttuynia cordata Thunb (Ceercao) using MaxEnt under climate change in China. Ecol Inf, 2021, 63: 101324.
[57] Hou P, Wu S L, McCarty J L, Gao Y. Sensitivity of atmospheric aerosol scavenging to precipitation intensity and frequency in the context of global climate change. Atmos Chem Phys, 2018, 18: 8173-8182.
[58] Mangani R, Tesfamariam E H, Engelbrecht C J, Bellocchi G, Hassen A, Mangani T. Potential impacts of extreme weather events in main maize (Zea mays L.) producing areas of South Africa under rainfed conditions. Reg Environ Change, 2019, 19: 1441-1452.
doi: 10.1007/s10113-019-01486-8
[59] 徐胜, 陈玮, 何兴元, 黄彦青, 高江艳, 赵诣, 李波. 高浓度CO2对树木生理生态的影响研究进展. 生态学报, 2015, 35: 2452-2460.
Xu S, Chen W, He X Y, Huang Y Q, Gao J Y, Zhao Y, Li B. Research advance in effect of elevated CO2 on eco-physiology of trees. Acta Ecol Sin, 2015, 35: 2452-2460 (in Chinese with English abstract).
[60] 刘方, 刘勇波, 李俊生, 黄海. 氢气在植物抗胁迫中的作用. 植物生理学报, 2015, 51: 141-152.
Liu F, Liu Y B, Li J S, Huang H. The role of hydrogen in plant stress tolerance. Plant Physiol J, 2015, 51: 141-152 (in Chinese with English abstract).
[61] 鄢丹, 王伽伯, 李俊贤, 马丽娜, 肖小河. 论道地药材品质辨识及其与生态环境的相关性研究策略. 中国中药杂志, 2012, 37: 2672-2675.
Yan D, Wang J B, Li J X, Ma L N, Xiao X H. Strategy for research on quality identification and ecological environment-related of Dao-di herb. China J Chin Mater Med, 2012, 37: 2672-2675 (in Chinese with English abstract).
[62] 张保得, 蔡吹, 谢准, 余红娅, 刘光华, 吕德芳, 袁丽萍, 胡艳芳, 徐福荣. 气候变化情景下滇重楼在中国的适生性分析. 植物遗传资源学报, 2024, 25: 1601-1612.
Zhang B D, Cai C, Xie Z, Yu H Y, Liu G H, Lyu D F, Yuan L P, Hu Y F, Xu F R. Ecological suitability of Paris Polyphylla var. Yunnanensis in China under the situation of climate change. J Plant Genet Resour, 2024, 25: 1601-1612 (in Chinese with English abstract).
[63] He X, Burgess K S, Yang X F, Ahrends A, Gao L M, Li D Z. Upward elevation and northwest range shifts for alpine Meconopsis species in the Himalaya-Hengduan Mountains region. Ecol Evol, 2019, 9: 4055-4064.
[64] Guan Y L, Liu J G, Cui W H, Chen D L, Zhang J K, Lu H W, Maeda E E, Zeng Z Z, Beck H E. Elevation regulates the response of climate heterogeneity to climate change. Geophys Res Lett, 2024, 51: e2024GL109483.
[1] HAO Jia-Le, ZHAO Jiong-Chao, ZHAO Ming-Yu, WANG Yi-Xuan, LU Jie, SHI Xiao-Yu, GAO Zhen-Zhen, CHU Qing-Quan. Assessment of the cultivation suitability and suitable regions of Gastrodia elata under climate change in China [J]. Acta Agronomica Sinica, 2024, 50(4): 1004-1014.
[2] WANG Lu, ZHAO Jiong-Chao, WANG Yi-Xuan, MI Yan-Hua, ZHANG Ning-Yi, ZHAO Ming-Yu, CHU Qing-Quan. Spatial distribution of cultivation suitable area for Panax notoginseng and its response to climate change [J]. Acta Agronomica Sinica, 2024, 50(11): 2860-2869.
[3] NAN Jin-Sheng, AN Jiang-Hong, CHAI Ming-Na, JIANG Yu-Lian, ZHU Zhi-Qiang, YANG Yan, HAN Bing. Relationship between the starch properties and its surface-bound proteins in grains with hardness in Avena nuda L. [J]. Acta Agronomica Sinica, 2023, 49(9): 2552-2561.
[4] LI Wei-Tao, GUO Jian-Bin, YU Bo-Lun, XU Si-Liang, CHEN Hai-Wen, WU Bei, GONG Ting-Feng, HUANG Li, LUO Huai-Yong, CHEN Yu-Ning, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, JIANG Hui-Fang. Establishment of HPLC-RID method for the determination of soluble sugars in peanut seed [J]. Acta Agronomica Sinica, 2021, 47(2): 368-375.
[5] ZHOU Yan-Hua,CAO Hong-Li,YUE Chuan,WANG Lu,HAO Xin-Yuan,WANG Xin-Chao*,YANG Ya-Jun*. Changes of DNA Methylation Levels and Patterns in Tea Plant (Camellia sinensis) during Cold Acclimation [J]. Acta Agron Sin, 2015, 41(07): 1047-1055.
[6] FENG Fa-Qiang,WANG Guo-Hua,WANG Qing-Feng,YANG Rui-Chun,LI Xiao-Qin. Variation of Provitamin A and Vitamin E Components at Milk Stage of Kernel Development in Sweet Corn [J]. Acta Agron Sin, 2014, 40(07): 1227-1234.
[7] LIU Min-Xuan,LU Ping. Distribution of Vitamin E Content and Its Correlation with Agronomic Traits and Carotenoids Content in Foxtail Millet Varieties in China [J]. Acta Agron Sin, 2013, 39(03): 398-408.
[8] LI Wei-Xi, ZHENG Chuang-Mu, WU Li, LI Xin, LI Jing-Mei, SONG Jing-Ke, YANG Xiu-Lan, WANG Bu-Jun. Determining Fumonisins in Corn by High Performance Liquid Chromatography with Immunoaffinity Column Cleanup [J]. Acta Agron Sin, 2012, 38(03): 556-562.
[9] ZHANG Gui-Yun, LIU Ru-Ru, ZHANG Feng, XU Yong, SHU Jiang, GU Ming-Hong, LIANG Guo-Hua, LIU Qiao-Quan. Variation and Distribution of Vitamin E and Composition in the Seeds among Different Rice Varieties [J]. Acta Agron Sin, 2012, 38(01): 55-61.
[10] YANG Dan, GENG Zhi-Meng, MA Hong-Xiang, TAO Jin-Bao, ZHANG Xu, ZHANG Beng-Beng, ZHANG Feng. Establishment of a HPLC-UV Method for Simultaneous Determination of DON, 15ACDON, and 3ACDON in Wheat [J]. Acta Agron Sin, 2012, 38(01): 186-189.
[11] WANG Chun-E, ZHAO Tuan-Jie, GAI Jun-Yi. Establishment of A Rapid HPLC Method for Quantifying Isoflavone Components and Its Application in Tofu Processing [J]. Acta Agron Sin, 2010, 36(12): 2062-2072.
[12] REN Yan;LIANG Dan;ZHANG Ping-Ping;HE Zhong-Hu;CHEN Jing;FU Ti-Hua;XIA Xian-Chun. Characterization of Overexpressed Bx7 Gene(Bx7OE) in Chinese and CIMMYT Wheats by STS Markers [J]. Acta Agron Sin, 2009, 35(3): 403-411.
[13] ZHOU Yi,FU Zhi-Yuan,LI Qing,XU Shu-Tu,CHANDER Subhash,YANG Xiao-Hong,LI Jian-She. Comparative Analysis of Carotenoid and Tocopherol Compositions in High-Oil and Normal Maize(Zea mays L.) Inbreds [J]. Acta Agron Sin, 2009, 35(11): 2073-2084.
[14] ZHANG Ping-Ping;XIAO Yong-Gui;LIU Jian-Jun;MA Hong-Xiang;HE Zhong-Hu. Relationship between SDS-Unextractable Glutenin Polymeric Protein and Mixograph Parameters [J]. Acta Agron Sin, 2008, 34(06): 1074-1079.
[15] TANG Jian-Wei;LIU Jian-Jun;ZHANG Ping-Ping;XIAO Yong-Gui;ZHANG Yong;QU Yan-Ying;HE Zhong-Hu. Effect of Allelic Variation at the Glu-1 Loci and 1B/1R Translocation on the Quantity of Gluten Protein Fractions and Pan Bread Making Quality in Common Wheat [J]. Acta Agron Sin, 2008, 34(04): 571-577.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!