Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (3): 687-895.doi: 10.3724/SP.J.1006.2025.44087
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
JIN Gao-Rui1(), WU Xiao-Li2(
), DENG Li3, CHEN Yu-Ning1, YU Bo-Lun1, GUO Jian-Bin1, DING Ying-Bin1, LIU Nian1, LUO Huai-Yong1, CHEN Wei-Gang1, HUANG Li1, ZHOU Xiao-Jing1, HUAI Dong-Xin1, TAN Jia-Zhuang2, JIANG Hui-Fang1, REN Li3, LEI Yong1, LIAO Bo-Shou1,*(
)
[1] | Janila P, Pandey M K, Shasidhar Y, Variath M T, Sriswathi M, Khera P, Manohar S S, Nagesh P, Vishwakarma M K, Mishra G P, Radhakrishnan T, Manivannan N, Dobariya K L, Vasanthi R P, Varshney R K. Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci, 2016, 242: 203-213. |
[2] | Braddock J C, Sims C A, O’Keefe S F. Flavor and oxidative stability of roasted high oleic acid peanuts. J Food Sci, 1995, 60: 489-493. |
[3] | Terés S, Barceló-Coblijn G, Alemany R, Benet M, Escribá P V. Oleic acid is responsible for the blood pressure reduction induced by olive oil through its “membrane-lipid therapy” action. Chem Phys Lipds, 2007, 149: S71-S72. |
[4] | Norden A J, Gorbet D W, Knauft D A, Young C T. Variability in oil quality among peanut genotypes in the Florida breeding Program1. Peanut Sci, 1987, 14: 7-11. |
[5] | Gorbet D W, Knauft D A. Registration of ‘SunOleic 95R’ peanut. Crop Sci, 1997, 37: 1392. |
[6] | Moore K M, Knauft D A. The inheritance of high oleic acid in peanut. J Hered, 1989, 80: 252-253. |
[7] | 禹山林, TGIsleib. 美国大花生脂肪酸的遗传分析. 中国油料作物学报, 2000, 22: 34-37. |
Yu S L, TGIsleib. The inheritance of high oleic acid content in peanut of Virginia type in USA. Chin J Oil Crop Sci, 2000, 22: 34-37 (in Chinese with English abstract). | |
[8] | 王传堂, 朱立贵. 高油酸花生. 上海: 上海科学技术出版社, 2017. pp 189-190. |
Wang C T, Zhu L G. High Oleic Acid Peanuts. Shanghai: Shanghai Scientific & Technical Publishers, 2017. pp 189-190 (in Chinese). | |
[9] | Rao K S, Tulpule P G. Varietal differences of groundnut in the production of aflatoxin. Nature, 1967, 214: 738-739. |
[10] | Mixon A C, Rogers K M. Peanut accessions resistant to seed infection by Aspergillus flavus. Agron J, 1973, 65: 560-562. |
[11] | 肖达人, 王圣玉, 瞿桢, 张洪玲. 花生抗黄曲霉毒素污染研究进展. 花生科技, 1999, 28(增刊1): 124-129. |
Xiao D R, Wang S Y, Qu Z, Zhang H L. Research progress of peanut resistance to aflatoxin pollution. J Peanut Sci, 1999, 28(S1): 124-129 (in Chinese with English abstract). | |
[12] |
姜慧芳, 任小平, 王圣玉, 张晓杰, 黄家权, 廖伯寿, Holbrooka C, Upadhyaya H. 利用核心种质发掘及评价花生抗黄曲霉资源. 作物学报, 2010, 36: 428-434.
doi: 10.3724/SP.J.1006.2010.00428 |
Jiang H F, Ren X P, Wang S Y, Zhang X J, Huang J Q, Liao B S, Holbrooka C, Upadhyaya H. Development and evaluation of peanut germplasm with resistance to Aspergillus flavus from core collection. Acta Agron Sin, 2010, 36: 428-434 (in Chinese with English abstract). | |
[13] | 王后苗. 花生抗黄曲霉菌产毒机制的研究. 中国农业科学院博士学位论文, 北京, 2016. |
Wang H M. Mechanism of Resistance to Aflatoxin Production in Peanut (Arachis hypogaea L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2016 (in Chinese with English abstract). | |
[14] | Yu B L, Huai D X, Huang L, Kang Y P, Ren X P, Chen Y N, Zhou X J, Luo H Y, Liu N, Chen W G, Lei Y, Pandey M K, Sudini H, Varshney R K, Liao B S, Jiang H F. Identification of genomic regions and diagnostic markers for resistance to aflatoxin contamination in peanut (Arachis hypogaea L.). BMC Genet, 2019, 20: 32. |
[15] |
晋高锐, 喻博伦, 郭建斌, 丁膺宾, 刘念, 罗怀勇, 陈伟刚, 黄莉, 周小静, 雷永, 廖伯寿, 姜慧芳. 花生籽仁抗黄曲霉菌侵染评价方法的优化及应用. 中国油料作物学报, 2024, 46: 1405-1411.
doi: 10.19802/j.issn.1007-9084.2023178 |
Jin G R, Yu B L, Guo J B, Ding Y B, Liu N, Luo H Y, Chen W G, Huang L, Zhou X J, Lei Y, Liao B S, Jiang H F. Improvement and utilization for scoring of the Aspergillus flavus infection to peanut seed. Chin J Oil Crop Sci, 2024, 46: 1405-1411 (in Chinese with English abstract). | |
[16] | Davis J P, Dean L O, Faircloth W H, Sanders T H. Physical and chemical characterizations of normal and high-oleic oils from nine commercial cultivars of peanut. J Am Oil Chem Soc, 2008, 85: 235-243. |
[17] | 赵志浩, 石爱民, 王强. 高油酸花生的研究进展与发展趋势. 粮食与油脂, 2019, 32(9): 1-4. |
Zhao Z H, Shi A M, Wang Q. Research progress and development trend of high-oleic acid peanuts. Cereals Oils, 2019, 32(9): 1-4 (in Chinese with English abstract). | |
[18] | 刘芳, 王积军, 汤松. 我国高油酸花生品种选育与推广应用. 中国农技推广, 2017, 33(1): 14-15. |
Liu F, Wang J J, Tang S. Breeding, popularization and application of peanut varieties with high oleic acid in China. China Agric Technol Ext, 2017, 33(1): 14-15 (in Chinese). | |
[19] | 巩鹏涛. 基于SSR标记锚定策略的大豆分子连锁图的整合. 广西大学硕士学位论文, 广西南宁, 2006. |
Gong P T. An Integrated Soybean Genetic Linkage Map Based on SSR Anchor Marker Strategies. MS Thesis of Guangxi University, Nanning, Guangxi, China, 2006 (in Chinese with English abstract). | |
[20] |
Burr B, Burr F A, Thompson K H, Albertson M C, Stuber C W. Gene mapping with recombinant inbreds in maize. Genetics, 1988, 118: 519-526.
doi: 10.1093/genetics/118.3.519 pmid: 3366363 |
[21] |
廖伯寿, 雷永, 王圣玉, 李栋, 黄家权, 姜慧芳, 任小平. 花生重组近交系群体的遗传变异与高油种质的创新. 作物学报, 2008, 34: 999-1004.
doi: 10.3724/SP.J.1006.2008.00999 |
Liao B S, Lei Y, Wang S Y, Li D, Huang J Q, Jiang H F, Ren X P. Genetic diversity of peanut RILs and enhancement for high oil genotypes. Acta Agron Sin, 2008, 34: 999-1004 (in Chinese with English abstract). | |
[22] |
李威涛, 徐志军, 蔡岩, 郭建斌, 喻博伦, 黄莉, 陈玉宁, 周小静, 罗怀勇, 刘念, 陈伟刚, 任小平, 姜慧芳. 抗青枯病兼大果和高出仁率的花生新种质创制. 作物学报, 2020, 46: 484-490.
doi: 10.3724/SP.J.1006.2020.94112 |
Li W T, Xu Z J, Cai Y, Guo J B, Yu B L, Huang L, Chen Y N, Zhou X J, Luo H Y, Liu N, Chen W G, Ren X P, Jiang H F. Development of novel peanut genotypes with resistance to bacterial wilt disease, large pod, and high shelling percentage. Acta Agron Sin, 2020, 46: 484-490 (in Chinese with English abstract). | |
[23] |
蒋艺飞, 喻博伦, 丁膺宾, 陈伟刚, 郭建斌, 陈海文, 罗怀勇, 刘念, 黄莉, 周小静, 姜慧芳, 雷永, 晏立英, 康彦平, 姜成红, 廖伯寿. 花生抗黄曲霉大果种质的创制与鉴定. 中国油料作物学报, 2022, 44: 72-77.
doi: 10.19802/j.issn.1007-9084.2020304 |
Jiang Y F, Yu B L, Ding Y B, Chen W G, Guo J B, Chen H W, Luo H Y, Liu N, Huang L, Zhou X J, Jiang H F, Lei Y, Yan L Y, Kang Y P, Jiang C H, Liao B S. Development and characterization of novel large-podded peanut genotypes with resistance to aflatoxin contamination. Chin J Oil Crop Sci, 2022, 44: 72-77 (in Chinese with English abstract). |
[1] | JIN Xin-Xin, SONG Ya-Hui, SU Qiao, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Identification and comprehensive evaluation of drought resistance in high oleic acid Jihua peanut varieties [J]. Acta Agronomica Sinica, 2025, 51(3): 797-811. |
[2] | HUANG Bing-Yan,QI Fei-Yan,SUN Zi-Qi,MIAO Li-Juan,FANG Yuan-Jin,ZHENG Zheng,SHI Lei,ZHANG Zhong-Xin,LIU Hua,DONG Wen-Zhao,TANG Feng-Shou,ZHANG Xin-You. Improvement of oleic acid content in peanut (Arachis hypogaea L.) by marker assisted successive backcross and agronomic evaluation of derived lines [J]. Acta Agronomica Sinica, 2019, 45(4): 546-555. |
[3] | Jian-Guo LI,Xiao-Meng XUE,Zhao-Hua ZHANG,Zhi-Hui WANG,Li-Ying YAN,Yu-Ning CHEN,Li-Yun WAN,Yan-Ping KANG,Dong-Xin HUAI,Hui-Fang JIANG,Yong LEI,Bo-Shou LIAO. Establishment and applicant of near-infrared reflectance spectroscopy models for predicting main fatty acid contents of single seed in peanut [J]. Acta Agronomica Sinica, 2019, 45(12): 1891-1898. |
[4] | LIU Hao,LU Qing,LI Hai-Fen,LI Shao-Xiong,CHEN Xiao-Ping,LIANG Xuan-Qiang,HONG Yan-Bin. Molecular mechanism of stearoyl-ACP desaturase gene FAB2 expression in peanut [J]. Acta Agronomica Sinica, 2019, 45(11): 1638-1648. |
[5] | YU Ming-Yang,SUN Ming-Ming,GUO Yue,JIANG Ping-Ping,LEI Yong,HUANG Bing-Yan,FENG Su-Ping,GUO Bao-Zhu,SUI Jiong-Ming,WANG Jing-Shan,QIAO Li-Xian. Breeding New Peanut Line with High Oleic Acid Content Using Backcross Method [J]. Acta Agron Sin, 2017, 43(06): 855-861. |
|