Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (12): 3157-3170.doi: 10.3724/SP.J.1006.2025.52020
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG Han,YU Jin-Jin,TAN Lin-Lu,ZHANG Jing-Quan,WANG Xiao-Dong,XIE Zhuang,XIE Ke-Ying, LING Ying-Hua,ZHAO Fang-Ming*
| [1] Mohidem N A, Hashim N, Shamsudin R, Che Man H. Rice for food security: revisiting its production, diversity, rice milling process and nutrient content. Agriculture, 2022, 12: 741. [2] Ahmad Rizal A R, Md Nordin S, Abd Rashid R, Hassim N. Decoding the complexity of sustainable rice farming: a systematic review of critical determining factor of farmers’ sustainable practices adoption. Cogent Food Agric, 2024, 10: 2334994.
[3] 杜明, 王阿红, 冯旗, 方玉. 我国作物设计育种体系发展及挑战. 作物杂志, 2024, (1): 1–7.
[4] 朱末, 闻竞, 徐晨, 张艳. 分子设计育种技术: 农业遗传改良中的潜力与挑战. 玉米科学, 2024, 32(10): 9–16. [5] Khush G S. Green revolution: the way forward. Nat Rev Genet, 2001, 2: 815–822. [6] Peleman J D, van der Voort J R. Breeding by design. Trends Plant Sci, 2003, 8: 330–334. [7] Wang X Q, Pang Y L, Zhang J, Zhang Q, Tao Y H, Feng B, Zheng T Q, Xu J L, Li Z K. Genetic background effects on QTL and QTL × environment interaction for yield and its component traits as revealed by reciprocal introgression lines in rice. Crop J, 2014, 2: 345–357.
[8] 席章营, 朱芬菊, 台国琴, 李志敏. 作物QTL分析的原理与方法. 中国农学通报, 2005, 21(1): 88–92. [9] Bu S H, Zhao X W, Yi C, Wen J, Tu J X, Zhang Y M. Interacted QTL mapping in partial NCII design provides evidences for breeding by design. PLoS One, 2015, 10: e0121034.
[10] 万建民. 作物分子设计育种. 作物学报, 2006, 32: 455–462.
[11] 薛勇彪, 王道文, 段子渊. 分子设计育种研究进展. 中国科学院院刊, 2007, 22: 486–490.
[12] 贺丹, 雷雅凯, 王政, 刘艺平, 张曼, 何松林. 花卉遗传连锁图谱构建与QTL定位的研究进展. 分子植物育种, 2017, 15: 994–1002. [13] Balakrishnan D, Surapaneni M, Mesapogu S, Neelamraju S. Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. Theor Appl Genet, 2019, 132: 1–25.
[14] 张桂权. 基于SSSL文库的水稻设计育种平台. 遗传, 2019, 41: 754–760. [15] Ali M L, Sanchez P L, Yu S B, Lorieux M, Eizenga G C. Chromosome segment substitution lines: a powerful tool for the introgression of valuable genes from Oryza wild species into cultivated rice (O. sativa). Rice, 2010, 3: 218–234. [16] Kashiwagi T. Effects of rice grain protein QTL, TGP12, on grain composition, yield components, and eating quality with different nitrogen applications. Field Crops Res, 2021, 263: 108051.
[17] 戴兴鑫, 刘艳洁, 李成霞, 汤睿, 牟佳美, 傅雪琳. 利用野生稻单片段代换系鉴定株高性状QTL. 广东农业科学, 2024, 51(11): 15–27. [18] Sikirou M, Dramé K N, Saito K, Bocco R, Lorieux M. Phenotypic variation among IR64 × TOG5681 rice (Oryza sativa × O. glaberrima) chromosome segment substitution lines (CSSL) in response to iron toxicity, and its associated QTLs. Euphytica, 2025, 221: 16. [19] Chen L L, Leng Y J, Zhang C Y, Li X X, Ye Z H, Lu Y, Huang L C, Liu Q, Gao J P, Zhang C Q, et al. Characterization of a major quantitative trait locus for the whiteness of rice grain using chromosome segment substitution lines. Plants, 2024, 13: 3588. [20] Deng K L, Zhang H, Wu J Y, Zhao Z W, Wang D C, Xu G Y, Yu J J, Ling Y H, Zhao F M. Development of single-segment substitution lines and fine-mapping of qSPP4 for spikelets per panicle and qGW9 for grain width based on rice dual-segment substitution line Z783. Int J Mol Sci, 2023, 24: 17305.
[21] 程怡冰, 黄倩, 韩冰, 崔迪, 邱先进, 马小定, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位水稻苗期耐盐性QTL. 植物遗传资源学报, 2024, 25: 1245–1253.
[22] 郑镇武, 赵宏源, 梁晓娅, 王一珺, 王驰航, 巩高洋, 黄金燕, 张桂权, 王少奎, 刘祖培. 水稻qGL3.4调控籽粒大小与株型. 遗传, 2023, 45: 835–844. [23] Xing M, Nie Y M, Huang J F, Li Y P, Zhao M C, Wang S Z, Wang Y Y, Chen W X, Chen Z Y, Zhang L F, et al. A wild rice CSSL population facilitated identification of salt tolerance genes and rice germplasm innovation. Physiol Plant, 2024, 176: e14301. [24] Nounjan N, Siangliw J L, Toojinda T, Chadchawan S, Theerakulpisut P. Salt-responsive mechanisms in chromosome segment substitution lines of rice (Oryza sativa L. cv. KDML105). Plant Physiol Biochem, 2016, 103: 96–105.
[25] 杨德卫, 朱镇, 张亚东, 林静, 陈涛, 赵凌, 朱文银, 王才林. 基于CSSL的水稻穗颈长度QTL的代换作图. 遗传, 2009, 31: 741–747. [26] Xu G Y, Deng K L, Yu J J, Li Q L, Li L, Xiang A N, Ling Y H, Zhang C W, Zhao F M. Genetic effects analysis of QTLs for rice grain size based on CSSL-Z403 and its dissected single and dual-segment substitution lines. Int J Mol Sci, 2023, 24: 12013. [27] Wang D, Wang H, Xu X, Wang M, Wang Y, Chen H, Ping F, Zhong H, Mu Z, Xie W, et al. Two complementary genes in a presence-absence variation contribute to indica-japonica reproductive isolation in rice. Nat Commun, 2023, 14: 4531.
[28] 郭洁, 刘少隆, 周新桥, 陈达刚, 陈可, 叶婵娟, 李逸翔, 刘传光, 陈友订. 水稻籼粳杂种不育性的遗传机理及杂种优势利用. 广东农业科学, 2022, 49(9): 53–65.
[29] 赵芳明, 郭超, 魏霞, 杨正林, 凌英华, 桑贤春, 王楠, 张长伟, 李云峰, 何光华. 日本晴与5个优良恢复系的多态性标记筛选及遗传差异分析. 西南大学学报(自然科学版), 2016, 38(11): 1–7. [30] Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991, 127: 181–197.
[31] 王大川, 汪会, 马福盈, 杜婕, 张佳宇, 徐光益, 何光华, 李云峰, 凌英华, 赵芳明. 增加穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位. 作物学报, 2020, 46: 140–146. [32] McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76: 815–829. [33] Zhao F M, Tan Y, Zheng L Y, Zhou K, He G H, Ling Y H, Zhang L H, Xu S Z. Identification of rice chromosome segment substitution line Z322-1-10 and mapping QTLs for agronomic traits from the F3 population. Cereal Res Commun, 2016, 44: 370–380. [34] Liang P X, Wang H, Zhang Q L, Zhou K, Li M M, Li R X, Xiang S Q, Zhang T, Ling Y H, Yang Z L, et al. Identification and pyramiding of QTLs for rice grain size based on short-wide grain CSSL-Z563 and fine-mapping of qGL3-2. Rice, 2021, 14: 35.
[35] 李璐, 谢庄, 谢可盈, 张瀚, 赵卓文, 向奥妮, 李巧龙, 凌英华, 何光华, 赵芳明. 水稻CSSL-Z492单、双片段代换系构建及粒型QTL的遗传解析. 中国农业科学, 2025, 58: 401–415.
[36] 刘立峰, 穆平, 张洪亮, 王毅, 李自超. 水、旱稻千粒重和产量QTL效应的验证. 中国农业科学, 2006, 39: 219–224.
[37] 康雪蒙, 马梦影, 巩文靓, 段海燕. 水稻粒型基因研究进展及应用. 农学学报, 2020, 10(12): 21–25. [38] Xing Y Z, Zhang Q F. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010, 61: 421–442. [39] Zhang G Q. Target chromosome-segment substitution: a way to breeding by design in rice. Crop J, 2021, 9: 658–668.
[40] 王萱, 马茜茜, 杨金莲, 伍虎, 李容柏. 水稻抗褐飞虱基因Bph3和Bph24(t)的聚合育种利用. 基因组学与应用生物学, 2024, 43(1): 31–44.
[41] 赵芳明, 朱海涛, 丁效华, 曾瑞珍, 张泽民, 李文涛, 张桂权. 基于SSSL的水稻重要性状QTL的鉴定及稳定性分析. 中国农业科学, 2007, 40: 447–456. [42] Qian Q, Guo L B, Smith S M, Li J Y. Breeding high-yield superior quality hybrid super rice by rational design. Natl Sci Rev, 2016, 3: 283–294. [43] Zhang S Y, Ji Z, Jiao W, Shen C B, Qin Y J, Huang Y Z, Huang M H, Kang S M, Liu X, Li S Q, et al. Natural variation of OsWRKY23 drives difference in nitrate use efficiency between indica and Japonica rice. Nat Commun, 2025, 16: 1420. [44] Zhang Q L, Wu R H, Hong T, Wang D C, Li Q L, Wu J Y, Zhang H, Zhou K, Yang H X, Zhang T, et al. Natural variation in the promoter of qRBG1/OsBZR5 underlies enhanced rice yield. Nat Commun, 2024, 15: 8565.
[45] 张龙廷, 吴静, 熊喜娟, 董景芳, 张少红, 赵均良, 刘自强, 杨梯丰. 基于单片段代换系的水稻苗高QTL定位和上位性效应分析. 华南农业大学学报, 2023, 44: 881–888. [46] Ren D Y, Ding C Q, Qian Q. Molecular bases of rice grain size and quality for optimized productivity. Sci Bull, 2023, 68: 314–350.
[47] 黄佳成, 彭锐, 丁家麒, 邱琪, 刘桃李. 水稻粒型相关基因的研究进展. 农村实用技术, 2025, (1): 87–88.
[48] 龚成云, 朱裕敬, 桂金鑫, 石居斌, 罗新阳, 曾哲, 张海清, 贺记外. 水稻粒型全基因组关联分析. 农业生物技术学报, 2024, 32: 2447–2461.
[49] 严语萍, 俞晓琦, 任德勇, 钱前. 水稻穗粒数遗传机制与育种利用. 植物学报, 2023, 58: 359–372.
[50] 刘雪薇, 吴朝昕, 姜雪, 龙武华, 朱速松. 基于重测序定位水稻株高QTL. 种子, 2025, 44(3): 26–32. [51] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707–711. [52] Gao Q, Zhang N, Wang W Q, Shen S Y, Bai C, Song X J. The ubiquitin-interacting motif-type ubiquitin receptor HDR3 interacts with and stabilizes the histone acetyltransferase GW6a to control the grain size in rice. Plant Cell, 2021, 33: 3331–3347. [53] Qiao J Y, Jiang H Z, Lin Y Q, Shang L G, Wang M, Li D M, Fu X D, Geisler M, Qi Y H, Gao Z Y, et al. A novel miR167a-OsARF6-OsAUX3 module regulates grain length and weight in rice. Mol Plant, 2021, 14: 1683–1698. [54] Biswal A K, Wu T Y, Urano D, Pelissier R, Morel J B, Jones A M, Biswal A K. Novel mutant alleles reveal a role of the extra-large G protein in rice grain filling, panicle architecture, plant growth, and disease resistance. Front Plant Sci, 2021, 12: 782960. [55] Lu S, Zhang N, Xu Y Z, Chen H, Huang J, Zou B H. Functional conservation and divergence of MOS1 that controls flowering time and seed size in rice and Arabidopsis. Int J Mol Sci, 2022, 23: 13448. [56] Eom J S, Cho J I, Reinders A, Lee S W, Yoo Y, Tuan P Q, Choi S B, Bang G, Park Y I, Cho M H, et al. Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. Plant Physiol, 2011, 157: 109–119. [57] Zhang X J, Wang J F, Huang J, Lan H X, Wang C L, Yin C F, Wu Y Y, Tang H J, Qian Q, Li J Y, et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA, 2012, 109: 21534–21539. [58] Liu J X, Wu X B, Yao X F, Yu R, Larkin P J, Liu C M. Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains. Proc Natl Acad Sci USA, 2018, 115: 11327–11332. [59] Liu Y T, Chen X, Xue S Y, Quan T Y, Cui D, Han L Z, Cong W X, Li M T, Yun D J, Liu B, et al. SET DOMAIN GROUP 721 protein functions in saline-alkaline stress tolerance in the model rice variety Kitaake. Plant Biotechnol J, 2021, 19: 2576–2588. [60] Zhang Z Y, Li J J, Tang Z S, Sun X M, Zhang H L, Yu J P, Yao G X, Li G L, Guo H F, Li J L, et al. Gnp4/LAX2, a RAWUL protein, interferes with the OsIAA3-OsARF25 interaction to regulate grain length via the auxin signaling pathway in rice. J Exp Bot, 2018, 69: 4723–4737. [61] Xiao Y H, Liu D P, Zhang G X, Tong H N, Chu C C. Brassinosteroids regulate OFP1, a DLT interacting protein, to modulate plant architecture and grain morphology in rice. Front Plant Sci, 2017, 8: 1698. [62] Irshad F, Li C, Wu H Y, Yan Y, Xu J H. The function of DNA demethylase gene ROS1a null mutant on seed development in rice (Oryza sativa) using the CRISPR/CAS9 system. Int J Mol Sci, 2022, 23: 6357. [63] Qin S S, Li W, Zeng J Y, Huang Y F, Cai Q. Rice tetraspanins express in specific domains of diverse tissues and regulate plant architecture and root growth. Plant J, 2024, 117: 892–908. [64] Lu L H, Qiu W M, Gao W W, Tyerman S D, Shou H X, Wang C. OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus. Plant Cell Environ, 2016, 39: 2247–2259. [65] Chang S W, Huang G Q, Wang D X, Zhu W W, Shi J X, Yang L T, Liang W Q, Xie Q, Zhang D B. Rice SIAH E3 ligases interact with RMD formin and affect plant morphology. Rice, 2022, 15: 6. |
| [1] | WANG Chan, WU Ying-Ying, LI Wen-Qi, LI Xia, WANG Fang-Quan, ZHOU Tong, YANG Jie. Development of functional markers of rice stripe disease resistance gene STV11 based on HRM technique [J]. Acta Agronomica Sinica, 2025, 51(9): 2547-2556. |
| [2] | GUO Bao-Wei, WANG Wang, WANG Kai, WANG Yan, ZENG Xin, JING Xiu, WANG Jing, NI Xin-Hua, XU Ke, ZHANG Hong-Cheng. Population dynamic characteristics and formation mechanisms of super high-yielding of two types of glutinous rice in the middle and lower reaches of the Yangtze Rive [J]. Acta Agronomica Sinica, 2025, 51(9): 2433-2453. |
| [3] | ZHANG Fei-Fei, HE Wan-Long, JIAO Wen-Juan, BAI Bin, GENG Hong-Wei, CHENG Yu-Kun. Meta-analysis of stripe rust resistance-associated traits and candidate gene identification in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2111-2127. |
| [4] | CHEN Hui-Ying, HE Jia-Xin, ZHU Bin, HUANG Shi-Xuan, ZHOU Xing-You, WU Jun-Quan, YANG Mei-Yan. Whole genome analysis and biological characterization of phage vB_XaS_ HDB2 infected with Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2025, 51(8): 2087-2099. |
| [5] | YANG Hai-Yang, WU Lin-Xuan, LI Bo-Wen, SHI Han-Feng, YUAN Xi-Long, LIU Jin-Zhao, CAI Hai-Rong, CHEN Shi-Yi, GUO Tao, WANG Hui. OsWRI3, identified based on QTL mapping, regulates seed shattering in rice [J]. Acta Agronomica Sinica, 2025, 51(7): 1712-1724. |
| [6] | WANG Fen, WU Dong-Li, ZHANG Quan-Jun. Response of phenological phase stages of single-cropping rice to climate change in Hubei province, China [J]. Acta Agronomica Sinica, 2025, 51(7): 1934-1948. |
| [7] | HU Meng, SHA Dan, ZHANG Sheng-Rui, GU Yong-Zhe, ZHANG Shi-Bi, LI Jing, SUN Jun-Ming, QIU Li-Juan, LI Bin. QTL mapping and candidate gene screening for branch number in soybean [J]. Acta Agronomica Sinica, 2025, 51(7): 1747-1756. |
| [8] | SHAO Shun-Wei, CHEN Zhuo, LAN Zhen-Dong, CAI Xing-Kui, ZOU Hua-Fen, LI Chen-Xi, TANG Jing-Hua, ZHU Xi, ZHANG Yu, DONG Jian-Ke, JIN Hui, SONG Bo-Tao. QTL mapping of tuber eye depth based on BSA-seq technique [J]. Acta Agronomica Sinica, 2025, 51(7): 1725-1735. |
| [9] | GUO Dong-Cai, LYU Tao, CAI Yong-Sheng, MAI WU-LU-DA·AI He-Mai-Ti, CHEN Quan-Jia, QU Yan-Ying, ZHENG Kai. Meta-analysis of QTL and identification of candidate genes for fiber quality in cotton [J]. Acta Agronomica Sinica, 2025, 51(6): 1445-1466. |
| [10] | LEI Song-Han, FAN Jun-Yang, CHE Yan-Yi, DAI Yong-Dong, ZHENG Yu-Meng, TIAN Wei-Jiang, SANG Xian-Chun, WANG Xiao-Wen. Identification of an adaxially-curled-leaf mutant acl3 and function analysis of the regulated gene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2025, 51(6): 1467-1479. |
| [11] | LI Fu-Yuan, YANG Yi, MA Ji-Qiong, XU Ming-Hui, LIN Liang-Bin, SUN Yi-Ding. Cloning, hormone-induced expression analysis, and interaction protein screening of OsPUB4 in rice [J]. Acta Agronomica Sinica, 2025, 51(6): 1690-1700. |
| [12] | LI Zi-Xiang, HUANG Rong, WANG Zhi-Chao, LI Hong-Yan, TAN Jun-Xing, CHENG Yu, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamate acid on lodging resistance of direct seeding rice [J]. Acta Agronomica Sinica, 2025, 51(6): 1654-1664. |
| [13] | ZHANG Jin-Ze, ZHOU Qing-Guo, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, LONG Xu, YAN Zhong-Bin, TIAN En-Tang. QTL mapping and candidate gene analysis of glucosinolate content in various tissues of Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(5): 1166-1177. |
| [14] | WANG Meng-Ning, XIE Ke-Ran, GAO Ti, WANG Fei, REN Xiao-Jian, XIONG Dong-Liang, HUANG Jian-Liang, PENG Shao-Bing, CUI Ke-Hui. Effect of high temperature during the panicle initiation and heading stages on grain shape and filling and its relationship with grain weight in rice [J]. Acta Agronomica Sinica, 2025, 51(5): 1347-1362. |
| [15] | SHENG Qian-Nan, FANG Ya-Ting, ZHAO Jian, DU Si-Yao, HU Xing-Zhen, YU Qiu-hua, ZHU Jun, REN Tao, LU Jian-Wei. Effects of different nutrient management practices on oilseed rape yield and their response to freezing stress between upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2025, 51(5): 1286-1298. |
|
||