Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2008, Vol. 34 ›› Issue (05): 754-763.doi: 10.3724/SP.J.1006.2008.00754

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Diversity of Brassica juncea from Western China

XU Ai-Xia12,MA Chao-Zhi2,XIAO En-Shi1,QUAN Jing-Chun1,MA Chang-Zhen1,TIAN Guang-Wen1,TU Jin-Xing2*,FU Ting-Dong2,ZHANG Gai-Sheng1   

  1. 1 College of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi; 2 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2007-08-11 Revised:1900-01-01 Online:2008-05-12 Published:2008-05-12
  • Contact: TU Jin-Xing

Abstract: A better understanding of genetic diversity and its distribution are essential for its conservation and use. The research of it will help us to determin what and where to be conserved, and improve our understanding of the taxonomy, origin and evolution of plant species. The genetic diversities of 108 accessions including 101 entries of Brassica juncea from western China, 2 from Australia, 4 entries of B. rapa, and 1 entiry of Eruca sativa Mill.were analysed by SRAP with 23 pairs of primer combinations, AFLP with 11 primer combinations, and SSR with 10 pairs of primer combinations. The results showed that totally 313 loci were detected in these materials. The genetic similarity coefficients of 108 accessions varied from 0.378–0.936, while 103 accessions of B. juncea from 0.545–0.936. The clustering analysis indicated that the genetic similarity coefficients of 5 checks including B. rapa, Eruca sativa Mill., were less than 0.558. At the point of genetic similarity coefficient, 0.700, the 103 accessions of B. juncea were divided into 5 groups, those were group A from Yunnan-Guizhou and Southern Shaanxi, group B from Guanzhong of Shaanxi, group C and group D from Xinjiang, and group E from western China. Groups A and B were winter type, groups C, D, and E were spring type. The genetic difference among the accessions in group A was the largest, and higher than that in group B. The accessions from Shaanxi and Xinjiang were distributed into 3 groups respectively, and showed abundant genetic diversity. Group E including the most spring accessions, was divided into 3 sub-groups. The accessions in the sub-group I were from Tibet, with the genetic similarity coefficient higher than 0.83, belonging to an independent genetic system with narrow genetic background. The accessions of yellow mustard in the sub-group II were from Northern Shaanxi, showed higher genetic diversity and belonged to another independent genetic system. In the sub-group III, two accessions from Australia were similar to the spring type in China. Therefore the genetic differences in B. juncea were mainly related to geological and biological conditions. The genetic diversities in winter type of B. juncea were higher than those in spring type in China. The genetic background of B. juncea in Shaanxi and Xinjiang was wide.

Key words: Brassica juncea, Genetic diversity, SRAP markers, AFLP markes, SSR markers

[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[3] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[4] SUN Qian, ZOU Mei-Ling, ZHANG Chen-Ji, JIANG Si-Rong, Eder Jorge de Oliveira, ZHANG Sheng-Kui, XIA Zhi-Qiang, WANG Wen-Quan, LI You-Zhi. Genetic diversity and population structure analysis by SNP and InDel markers of cassava in Brazil [J]. Acta Agronomica Sinica, 2021, 47(1): 42-49.
[5] Meng-Liang ZHAO,Li-Hui WANG,Yan-Jing REN,Xue-Mei SUN,Zhi-Qiang HOU,Shi-Peng YANG,Li LI,Qi-Wen ZHONG. Genetic diversity of phenotypic traits in 257 Jerusalem artichoke accessions [J]. Acta Agronomica Sinica, 2020, 46(5): 712-724.
[6] Hong-Yan ZHANG,Tao YANG,Rong LIU,Fang JIN,Li-Ke ZHANG,Hai-Tian YU,Jin-Guo HU,Feng YANG,Dong WANG,Yu-Hua HE,Xu-Xiao ZONG. Assessment of genetic diversity by using EST-SSR markers in Lupinus [J]. Acta Agronomica Sinica, 2020, 46(3): 330-340.
[7] MA Yan-Ming, FENG Zhi-Yu, WANG Wei, ZHANG Sheng-Jun, GUO Ying, NI Zhong-Fu, LIU Jie. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits [J]. Acta Agronomica Sinica, 2020, 46(12): 1997-2007.
[8] MA Yan-Ming, LOU Hong-Yao, CHEN Zhao-Yan, XIAO Jing, XU Lin, NI Zhong-Fu, LIU Jie. Genetic diversity assessment of winter wheat landraces and cultivars in Xinjiang via SNP array analysis [J]. Acta Agronomica Sinica, 2020, 46(10): 1539-1556.
[9] LIU Yi-Ke,ZHU Zhan-Wang,CHEN Ling,ZOU Juan,TONG Han-Wen,ZHU Guang,HE Wei-Jie,ZHANG Yu-Qing,GAO Chun-Bao. Revealing the genetic diversity of wheat varieties (lines) in China based on SNP markers [J]. Acta Agronomica Sinica, 2020, 46(02): 307-314.
[10] YE Wei-Jun,CHEN Sheng-Nan,YANG Yong,ZHANG Li-Ya,TIAN Dong-Feng,ZHANG Lei,ZHOU Bin. Development of SSR markers and genetic diversity analysis in mung bean [J]. Acta Agronomica Sinica, 2019, 45(8): 1176-1188.
[11] Mi WU,Nian WANG,Chao SHEN,Cong HUANG,Tian-Wang WEN,Zhong-Xu LIN. Development and evaluation of InDel markers in cotton based on whole-genome re-sequencing data [J]. Acta Agronomica Sinica, 2019, 45(2): 196-203.
[12] Yuan LU,Wei-Da AI,Qing HAN,Yi-Fa WANG,Hong-Yang LI,Yu-Ji QU,Biao SHI,Xue-Fang SHEN. Genetic diversity and population structure analysis by SSR markers in waxy maize [J]. Acta Agronomica Sinica, 2019, 45(2): 214-224.
[13] CHEN Fang,QIAO Lin-Yi,LI Rui,LIU Cheng,LI Xin,GUO Hui-Juan,ZHANG Shu-Wei,CHANG Li-Fang,LI Dong-Fang,YAN Xiao-Tao,REN Yong-Kang,ZHANG Xiao-Jun,CHANG Zhi-Jian. Genetic analysis and chromosomal localization of powdery mildew resistance gene in wheat germplasm CH1357 [J]. Acta Agronomica Sinica, 2019, 45(10): 1503-1510.
[14] XUE Yan-Tao,LU Ping,SHI Meng-Sha,SUN Hao-Yue,LIU Min-Xuan,WANG Rui-Yun. Genetic diversity and population genetic structure of broomcorn millet accessions in Xinjiang and Gansu [J]. Acta Agronomica Sinica, 2019, 45(10): 1511-1521.
[15] Hong LIU,Zhen-Jiang XU,De-Hua RAO,Qing LU,Shao-Xiong LI,Hai-Yan LIU, ,Xuan-Qiang LIANG,Yan-Bin HONG. Genetic diversity analysis and distinctness identification of peanut cultivars based on morphological traits and SSR markers [J]. Acta Agronomica Sinica, 2019, 45(1): 26-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!