Acta Agron Sin ›› 2009, Vol. 35 ›› Issue (2): 370-374.doi: 10.3724/SP.J.1006.2009.00370
• RESEARCH NOTES • Previous Articles Next Articles
MA Bing-Tian1,2,QU Guang-Lin1,HUANG Wen-Juan1,LIN Yu-Fan1,LI Shi-Gui1,2,*
[1]Zhai Z-H(翟中和), Wang X-Z(王喜忠), Ding M-X(丁明孝). Cell Biology (细胞生物学). Beijing: Higher Education Press, 2000. pp 124–157(in Chinese) [2]Ford C E, Skiba N P, Bae H, Daaka Y, Reuveny E, Shekter L R, Rosal R, Weng G, Yang C S, Iyengar R, Miller R J, Jan L Y, Lefkowitz R J, Hamm H E. Molecular basis for interations of G protein βγ subunits with effectors. Science, 1998, 280: 1271–1274 [3]Chen J-L(陈巨莲), Ni H-X(倪汉祥), Sun J-R(孙京瑞), Weng G. G protein β1γ2 subunits purification and their interaction with adenylyl cyclase. Sci China (Ser C) (中国科学?C辑), 2003, 33(1): 56–64 (in Chinese) [4]Hou Y M, Chang V, Capper A B, Taussig R, Gautam N. G protein β subunit types differentially interact with a muscarinic receptor but not adenylyl cyclase type II or phospholipase C-β2/3. J Biol Chem, 2001, 276: 19982–19988 [5]Kasahara S, Nuss D L. Targeted disruption of a fungal G-protein β subunit gene results in increased vegetative growth but reduced viru-lence. Mol Plant Microbe Int, 1997, 10: 984–993 [6]Latijnhouwers M, Govers F. A Phytophthora infestans G-Protein β subunit is involved in sporangium formation. Eukaryot Cell, 2003, 2: 971–977 [7]Zeller C E, Parnell S C, Dohlman H G. The RACK1 ortholog Asc1 functions as a G-protein β-Subunit coupled to glucose responsiveness in yeast. J Biol Chem, 2007, 282: 25168–25176 [8]Delgado-Jarana J, Martínez-Rocha A L, Roldán-Rodriguez R, Ron-cero M I, Di Pietro A. Fusarium oxysporum G-protein beta subunit Fgb1 regulates hyphal growth, development, and virulence through multiple signalling pathways. Fungal Genet Biol, 2005, 42: 61–72 [9]Chen J-L(陈巨莲), Weng G-Z, Ni H-X(倪汉祥). The advancement of G protein and coupled signal transduction pathways. Chin J Biotech-nol (生物工程学报), 2001, 17(2): 113–117(in Chinese with English abstract) [10]Ruiz-Velasco V, Ikeda S R, Puhl H L. Cloning, tissue distribution and functional expression of the human G protein β4-subunit. Physiol Genomics, 2002, 8: 41–50 [11]Lupas A N, Lupas J M, Stock J B. Do G protein subunits associate via a three-stranded coiled coil? FEBS Lett, 1992, 314: 105–108 [12]Claphan D E, Neer E J. New roles for G-protein βγ-dimers in trans-membrane signaling. Nature, 1993, 365: 403–406 [13]Wang D S, Shaw R, Winkelmann J C, Shaw G. Binding of PH do-mains of β-adrenergic receptor kinase and β-spectrin to WD40/ β-transducin repeat containing regions of the β-subunit of trimeric G-proteins. Biochem Biophys Res Commun, 1994, 203: 29–35 [14]Weiss C A, Garnaat C W, Mukai K, Hu Y, Ma H. Isolation of cDNAs encoding GTP-binding protein β-subunit homologues from maize (ZGB1) and Arabidopsis (AGB1). Proc Natl Acad Sci USA, 1994, 91: 9554–9558 [15]Ishikawa A, Iwasaki Y, Asahi T. Molecular cloning and characteriza-tion of a cDNA for the β-subunit of a G protein from rice. Plant Cell Physiol, 1996, 37: 223–228 [16]Kaydamov C, Tewes A, Adler K, Manteuffel R. Molecular charac-terization of cDNAs encoding G protein α and β subunits and study of their temporal and spatial expression patterns in Nicotiana plum-baginifolia Viv. Biochim Biophys Acta, 2000, 149: 143–160 [17]Wang P, Perfect J R, Heitman J. The G-protein β subunit GPB1 is re-quired for mating and haploid fruiting in Cryptococcus neoformans. Mol Cell Biol, 2000, 20: 352–362 |
[1] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[2] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[3] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[4] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
[5] | PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209. |
[6] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[7] | LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951. |
[8] | DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571. |
[9] | ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596. |
[10] | WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643. |
[11] | ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537. |
[12] | YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702. |
[13] | SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752. |
[14] | CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790. |
[15] | ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805. |
|