Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2008, Vol. 34 ›› Issue (12): 2190-2195.doi: 10.3724/SP.J.1006.2008.02190

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Space-Time Dynamics of Heterodera glycines in Soybean Roots

LI Xiu-Xia,WANG Zhen-Hua,SHI Li-Bo,WU Hai-Yan*,BI Jian-Jie,LI Duo-Chuan   

  1. College of Plant Protection, Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2008-03-04 Revised:2008-05-15 Online:2008-12-12 Published:2008-09-06
  • Contact: WU Hai-Yan E-mail:wuhy@sdau.edu.cn

Abstract:

Population of Heterodera glycines fluctuations in the fields during growth of soybean. In order to investigate dynamics of Heterodera glycines in soybean roots, and provide more information of effective control for soybean cyst nematode, distribution and dynamics of soybean cyst nematode (SCN, Heterodera glycines, race 4) in the soybean roots were monitored during the period of 7–37 d after seedling emergence in 2006 and 2007. The results indicated that distribution of SCN population closely related to the growth of roots. Nematodes invaded the roots at 7 days after seedling emergence, and nematode density and population increased with the growth of soybean roots, the fluctuation of nematodes per centimeter root showed a sigmoid curve. The changed of nematodes per cm root showed an inverse trend with the age of seedlings between taproot and lateral root. Nematode density in taproot had a declining trend, when that in lateral root increased to a stable value. Difference of nematode density between taproot and lateral root decreased with deepening the soil layer, number of nematodes per cm root and percent to total nematodes reached the ultimate number in the 5–15 cm soil, suggesting that most of the nematodes distributed in lateral root and at the 5–15 cm soil layer during the soybean seedling stage.

Key words: Soybean, Heterodera glycines, Root, Space-time dynamics

[1]Kim D C, Rakes L, Riggs R D, Robbins R T. Distribution of race of Heterodera glycines in the central United States. J Nematol, 1997, 29: 173-179
[2]Lu W-G(卢为国), Gai J-Y(盖均镒), Li W-D(李卫东). Sam-pling survey and identification of races of soybean cyst nematode (Heterodera glycines Ichinohe) in Huang-Huai Valleys. Sci Agric Sin (中国农业科学), 2006, 39(2): 306-312 (in Chinese with English abstract)
[3]Wan Y-S(宛煜嵩), Wang Z(王珍). Research progress on soybean cyst nematode in China (Heterodera glycines). Mol Plant Breed (分子植物育种), 2004, 2(5): 609-619(in Chinese with English abstract)
[4]Tefft P M, Bone L W. Plant induced hatching of eggs of the soybean cyst nematode Heterodera glycine. J Nematol, 1985, 17: 275-279
[5]Kushida A, Suwa N, Weda Y. Effects of Crotalaria juncea and C-spectabilis on hatching and population density of the soybean cyst nematode, Heterodera glycines (Tylenchida: Heteroderidae). Appl Entomol Zool, 2003, 38: 393-399
[6]Alston D G. Development of Heterodera glycines Life Stages as Influenced by Temperature. Ralergh: North Carolina State University, 1985
[7]Heatherly L G, Young L D. Soybean and soybean cyst nema-tode response to soil water content in loam and clay soils. Crop Sci, 1991, 31: 191-196
[8]Alston D G, Schmitt D P. Population density and spatial pat-tern of Heterodera glycines in relation to soybean phenology. J Nematol, 1987, 19: 336-345
[9]Anand S C, Matson K W, Sharma S B. Effect of soil tem-perature and pH on resistance of soybean to Heterodera gly-cines. J Nematol, 1995, 27: 478-482
[10]Barker K R. Influence of soil moisture, cultivar, and popula-tion density of Meloidogyne incognita on soybean yield in microplots. J Nematol, 1982, 14: 429
[11]Santo G S, Bolander W J. Interacting effects of soil tempera-ture and type on reproduction and pathogenicity of Heterod-era schachtii and Meloidogyne hapla on sugar-beets. J Nematol, 1979, 11: 289-291
[12]Liu W-Z(刘维志). Technology for Nematologica Research (植物线虫学研究技术). Shenyang: Liaoning Science and Technology Publishing House, 1995 (in Chinese)
[13]Sun G-Y(孙广玉), Zhang R-H(张荣华), Huang Z-W(黄忠文). Soybean root distributions in meadow-blackland and albic-soil. Chin J Oil Crop Sci (中国油料作物学报), 2002, 24(1): 45-47(in Chinese with English abstract)
[14]Sun G-Y(孙广玉), He Y(何庸), Zhang R-H(张荣华), Zhang D-P(张代平). Studies on growth and activities of soybean root. Soybean Sci (大豆科学), 1996, 15(4): 317-321(in Chi-nese with English abstract)
[15]Tefft P M, Rande J F, Bone L W. Factors influencing eggs hatching of the soybean cyst nematode Heterodera glycines Race 3. Proc Helmintholog Soc Washington, 1982, 49: 258-265
[16]Heatherly L G, Young L D, Epps J M, Hartwig E E. Effect of upper-profile soil water potential on numbers of cysts of He- terodera glycines on soybeans. Crop Sci, 1982, 22: 833-835
[17]Alston D G, Schmitt D P. Development of Heterodera gly-cines life stages as influenced by temperature. J Nematol, 1988, 20: 366-372
[18]Prot J C. Migration of plant-parasitic nematodes towards plant roots. Rev Nematol, 1980, 3: 305-318
[19]Curl E A, Truelove B. The Rhizosphere. Berlin: Springer- Verlag, 1986
[20]Zhao X W, Schmitt M, Hawes M C. Species-dependent ef-fects of border cell and root tip exudates on nematode beha- vior. Nematology, 2000, 90: 1239-1245
[21]Li Y-X(李永孝). Soybean in Shandong Province (山东大豆). Jinan: Shandong Science and Technology Press, 1999 (in Chinese)
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[4] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[5] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[6] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[7] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[8] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[9] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[10] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[11] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[12] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[13] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[14] YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702.
[15] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!