Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (08): 1331-1338.doi: 10.3724/SP.J.1006.2013.01331

• REVIEW •     Next Articles

Progress on Gene Regulatory Mechanisms by Small RNAs during Plant Polyploidization

ZHAO Xu-Bo,LI Ai-Li,MAO Long*   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
  • Received:2013-03-19 Revised:2013-04-22 Online:2013-08-12 Published:2013-05-20
  • Contact: 毛龙, E-mail: maolong@caas.cn

Abstract:

Polyploidization is an important mechanism during plant evolution and polyploids are prevalent in the plant kingdom. Compared with their parents, polyploids often have strong growth vigor. Thus, how genes from different species are regulated in polyploid plants is a research area of great interest. Recently, small RNAs were found to be involved in re-establishing gene expression balance during plant polyploidization. In this paper, we presented an up to date overview on cis- and trans-gene regulatory mechanism in plant polyploidization that is mediated by small RNAs, especially by miRNAs and siRNAs. We also provided opinions on future directions in polyploid crop research.

Key words: miRNA, siRNA, Polyploidization, Epigenetic modification

[1]Chen Z J. Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci, 2010, 15: 57–71



[2]Arrigo N, Barker M S. Rarely successful polyploids and their legacy in plant genomes. Curr Opin Plant Biol, 2012, 15: 140–146



[3]Chen Z J. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol, 2007, 58: 377–406



[4]Feldman M, Levy A A. Genome evolution due to allopolyploidization in wheat. Genetics, 2012, 192: 763–774



[5]Feldman M, Levy A A, Fahima T, Korol A. Genomic asymmetry in allopolyploid plants: wheat as a model. J Exp Bot, 2012, 63: 5045–5059



[6]Adams K L, Wendel J F. Polyploidy and genome evolution in plants. Curr Opin Plant Biol, 2005, 8: 135–141



[7]Higgins J, Magusin A, Trick M, Fraser F, Bancroft I. Use of mRNA-seq to discriminate contributions to the transcriptome from the constituent genomes of the polyploid crop species Brassica napus. BMC Genomics, 2012, 13: 247



[8]Jiao Y, Wickett N J, Ayyampalayam S, Chanderbali A S, Landherr L, Ralph P E, Tomsho L P, Hu Y, Liang H, Soltis P S, Soltis D E, Clifton S W, Schlarbaum S E, Schuster S C, Ma H, Leebens-Mack J, dePamphilis C W. Ancestral polyploidy in seed plants and angiosperms. Nature, 2011, 473: 97–100



[9]Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet, 2005, 6: 836–846



[10]Lu J, Zhang C, Baulcombe D C, Chen Z J. Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of Arabidopsis seeds. Proc Natl Acad Sci USA, 2012, 109: 5529–5534



[11]Kenan-Eichler M, Leshkowitz D, Tal L, Noor E, Melamed-Bessudo C, Feldman M, Levy A A. Wheat hybridization and polyploidization results in deregulation of small RNAs. Genetics, 2011, 188: 263–272



[12]Ha M, Lu J, Tian L, Ramachandran V, Kasschau K D, Chapman E J, Carrington J C, Chen X, Wang X J, Chen Z J. Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci USA, 2009, 106: 17835–17840



[13]McClintock B. The significance of responses of the genome to challenge. Science, 1984, 226: 792–801



[14]Osborn T C, Pires J C, Birchler J A, Auger D L, Chen Z J, Lee H S, Comai L, Madlung A, Doerge R W, Colot V, Martienssen R A. Understanding mechanisms of novel gene expression in polyploids. Trends Genet, 2003, 19: 141–147



[15]Salmon A, Ainouche M L. Polyploidy and DNA methylation: new tools available. Mol Ecol, 2010, 19: 213–215



[16]Miller M, Zhang C, Chen Z J. Ploidy and hybridity effects on growth vigor and gene expression in Arabidopsis thaliana hybrids and their parents. G3: Genes| Genomes| Genetics, 2012, 2: 505–513



[17]Paterson A H, Wendel J F, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker K C, Shu S, Udall J, Yoo M J, Byers R, Chen W, Doron-Faigenboim A, Duke M V, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee T H, Li J, Lin L, Liu T, Marler B S, Page JT, Roberts A W, Romanel E, Sanders W S, Szadkowski E, Tan X, Tang H, Xu C, Wang J, Wang Z, Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers J E, Brubaker C L, Chee P W, Das S, Gingle A R, Haigler C H, Harker D, Hoffmann L V, Hovav R, Jones D C, Lemke C, Mansoor S, ur Rahman M, Rainville L N, Rambani A, Reddy U K, Rong J K, Saranga Y, Scheffler B E, Scheffler J A, Stelly D M, Triplett B A, Van Deynze A, Vaslin M F, Waghmare V N, Walford S A, Wright R J, Zaki E A, Zhang T, Dennis E S, Mayer K F, Peterson D G, Rokhsar D S, Wang X, Schmutz J. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 2012, 492: 423–427



[18]Mestiri I, Chague V, Tanguy A M, Huneau C, Huteau V, Belcram H, Coriton O, Chalhoub B, Jahier J. Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity. New Phytol, 2010, 186: 86–101



[19]Matsuoka Y. Evolution of polyploid triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol, 2011, 52: 750–764



[20]Kim E D, Chen Z J. Unstable transcripts in Arabidopsis allotetraploids are associated with nonadditive gene expression in response to abiotic and biotic stresses. PLoS One, 2011, 6: e24251



[21]Chague V, Just J, Mestiri I, Balzergue S, Tanguy A M, Huneau C, Huteau V, Belcram H, Coriton O, Jahier J, Chalhoub B. Genome-wide gene expression changes in genetically stable synthetic and natural wheat allohexaploids. New Phytol, 2010, 187: 1181–1194



[22]Pumphrey M, Bai J, Laudencia-Chingcuanco D, Anderson O, Gill B S. Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics, 2009, 181: 1147–1157



[23]Akhunova A R, Matniyazov R T, Liang H, Akhunov E D. Homoeolog-specific transcriptional bias in allopolyploid wheat. BMC Genomics, 2010, 11: 505



[24]Flagel L E, Wendel J F. Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol, 2010, 186: 184–193



[25]Vidal R O, Mondego J M, Pot D, Ambrosio A B, Andrade A C, Pereira L F, Colombo C A, Vieira L G, Carazzolle M F, Pereira G A. A high-throughput data mining of single nucleotide polymorphisms in Coffea species expressed sequence tags suggests differential homeologous gene expression in the allotetraploid Coffea arabica. Plant Physiol, 2010, 154: 1053–1066



[26]Qi B, Huang W, Zhu B, Zhong X, Guo J, Zhao N, Xu C, Zhang H, Pang J, Han F, Liu B. Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum) lines. BMC Biol, 2012, 10: 3



[27]Ni Z, Kim E D, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, Chen Z J. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature, 2009, 457: 327–331



[28]Chelaifa H, Chague V, Chalabi S, Mestiri I, Arnaud D, Deffains D, Lu Y, Belcram H, Huteau V, Chiquet J, Coriton O, Just J, Jahier J, Chalhoub B. Prevalence of gene expression additivity in genetically stable wheat allohexaploids. New Phytol, 2013, 197: 730–736



[29]Wang J, Tian L, Lee H S, Wei N E, Jiang H, Watson B, Madlung A, Osborn T C, Doerge R W, Comai L, Chen Z J. Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics, 2006, 172: 507–517



[30]Yoo M J, Szadkowski E, Wendel J F. Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity (Edinb), 2013, 110: 171–180



[31]Ng D W, Zhang C, Miller M, Palmer G, Whiteley M, Tholl D, Chen Z J. cis- and trans-regulation of miR163 and target genes confers natural variation of secondary metabolites in two Arabidopsis species and their allopolyploids. Plant Cell, 2011, 23: 1729–1740



[32]Castel S E, Martienssen R A. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet, 2013, 14: 100–112



[33]Matzke M, Matzke A J, Kooter J M. RNA: guiding gene silencing. Science, 2001, 293: 1080–1083



[34]Boyko A, Kovalchuk I. Genome instability and epigenetic modification—heritable responses to environmental stress? Curr Opin Plant Biol, 2011, 14: 260–266



[35]Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, Ainouche M, Chalhoub B, Grandbastien M A. Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol, 2010, 186: 37–45



[36]Molnar A, Melnyk C, Baulcombe D C. Silencing signals in plants: a long journey for small RNAs. Genome Biol, 2011, 12: 215



[37]Haag J R, Pikaard C S. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol, 2011, 12: 483–492



[38]Ng D W, Lu J, Chen Z J. Big roles for small RNAs in polyploidy, hybrid vigor, and hybrid incompatibility. Curr Opin Plant Biol, 2012, 15: 154–161



[39]Wierzbicki A T, Haag J R, Pikaard C S. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell, 2008, 135: 635–648



[40]Mosher R A, Melnyk C W, Kelly K A, Dunn R M, Studholme D J, Baulcombe D C. Uniparental expression of PolIV-dependent siRNAs in developing endosperm of Arabidopsis. Nature, 2009, 460: 283–286



[41]Slotkin R K, Vaughn M, Borges F, Tanurdzic M, Becker J D, Feijo J A, Martienssen R A. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell, 2009, 136: 461–472



[42]Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y. Rice MicroRNA effector complexes and targets. Plant Cell, 2009, 21: 3421–3435



[43]Hegarty M J, Batstone T, Barker G L, Edwards K J, Abbott R J, Hiscock S J. Nonadditive changes to cytosine methylation as a consequence of hybridization and genome duplication in Senecio (Asteraceae). Mol Ecol, 2011, 20: 105–113



[44]Xu Y, Zhong L, Wu X, Fang X, Wang J. Rapid alterations of gene expression and cytosine methylation in newly synthesized Brassica napus allopolyploids. Planta, 2009, 229: 471–483



[45]Dalakouras A, Wassenegger M. Revisiting RNA-directed DNA methylation. RNA Biol, 2013, 10: 453–455



[46]Calarco J P, Borges F, Donoghue M T, Van Ex F, Jullien P E, Lopes T, Gardner R, Berger F, Feijo J A, Becker J D, Martienssen R A. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell, 2012, 151: 194–205



[47]Swiezewski S, Crevillen P, Liu F, Ecker J R, Jerzmanowski A, Dean C. Small RNA-mediated chromatin silencing directed to the 3? region of the Arabidopsis gene encoding the developmental regulator, FLC. Proc Natl Acad Sci USA, 2007, 104: 3633–3638



[48]Groszmann M, Greaves I K, Albertyn Z I, Scofield G N, Peacock W J, Dennis E S. Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc Natl Acad Sci USA, 2011, 108: 2617-2622



[49]Birchler J A, Veitia R A. Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc Natl Acad Sci USA, 2012, 109: 14746–14753



[50]Khraiwesh B, Zhu J K, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta, 2012, 1819: 137–148



[51]Kim J H, Woo H R, Kim J, Lim P O, Lee I C, Choi S H, Hwang D, Nam H G. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science, 2009, 323: 1053–1057



[52]Wei B, Cai T, Zhang R, Li A, Huo N, Li S, Gu YQ, Vogel J, Jia J, Qi Y, Mao L. Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics, 2009, 9: 499–511



[53]Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer K F, Li D, Pan S, Zheng F, Hu Q, Xia X, Li J, Liang Q, Chen J, Wicker T, Gou C, Kuang H, He G, Luo Y, Keller B, Xia Q, Lu P, Wang J, Zou H, Zhang R, Xu J, Gao J, Middleton C, Quan Z, Liu G, Yang H, Liu X, He Z, Mao L. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496: 91–95



[54]Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory A C, Hilbert J L, Bartel D P, Crete P. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell, 2004, 16: 69–79



[55]Shi X, Ng D W, Zhang C, Comai L, Ye W, Chen Z J. cis- and trans-regulatory divergence between progenitor species determines gene-expression novelty in Arabidopsis allopolyploids. Nat Commun, 2012, 3: 950



[56]Kouzarides T. Chromatin modifications and their function. Cell, 2007, 128: 693–705



[57]Liu C, Lu F, Cui X, Cao X. Histone methylation in higher plants. Annu Rev Plant Biol, 2010, 61: 395–420



[58]Tariq M, Paszkowski J. DNA and histone methylation in plants. Trends Genet, 2004, 20: 244–251



[59]Chan S W, Zilberman D, Xie Z, Johansen L K, Carrington J C, Jacobsen S E. RNA silencing genes control de novo DNA methylation. Science, 2004, 303: 1336



[60]Ling H Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Luo M C, Dvorak J, Tong Y, Yang H, Li Z, Wang D, Zhang A. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013, 496: 87–90



[61]Brenchley R, Spannagl M, Pfeifer M, Barker G L, D'Amore R, Allen A M, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M C, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie W R, Hall A, Mayer K F, Edwards K J, Bevan M W, Hall N. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 2012, 491: 705–710

[1] Qi-Yue WANG, Shu-Jun MENG, Ke ZHANG, Zhan-Hui ZHANG, Ji-Hua TANG, Dong DING. Investigation of Maize miRNA Involved in Developing-ear Heterosis [J]. Acta Agronomica Sinica, 2018, 44(6): 796-813.
[2] WANG Cui-Ping,HUA Xue-Jun,LIN Bin,LIU Ai-Hua. Evolutionary Fate and Expression Pattern of Genes Related to Proline Biosynthesis in Brassica napus [J]. Acta Agron Sin, 2017, 43(10): 1480-1488.
[3] MA Yan-Ming,CHEN Chun-Hai,YANG Kai,LI Yi-Song,ZHAO Bo,LI Jiang,LI Yong-Qiang,WAN Ping. Global Identification and Comparison of MicroRNA in Wild and Cultivated Adzuki Bean [J]. Acta Agron Sin, 2016, 42(09): 1273-1281.
[4] XIE Tao,RONG Hao,JIANG Jin-Jin*,KONG Yue-Qin,RAN Li-Ping,WU Jian,WANG You-Ping. Analysis of DNA Methylation Patterns in Resynthesized Brassica napus and Diploid Parents [J]. Acta Agron Sin, 2016, 42(04): 513-524.
[5] HE Liang-Qiong,XIONG Fa-Qian,TANG Xiu-Mei,JIANG Jing,HAN Zhu-Qiang,ZHONG Rui-Chun,GAO Zhong-Kui,Li Zhong,HE Xin-Hua,TANG Rong-Hua. Analysis of Gene Expression Variation by cDNA-SCoT Technique at the Early Period of Arachis Artificial Allopolypoidy Evolution [J]. Acta Agron Sin, 2014, 40(10): 1767-1775.
[6] HUANG Zhi-Xiong,WANG Fei-Juan,JIANG Han,LI Zhi-Lan,DING Yan-Fei,JIANG Qiong,TAO Yue-Liang,ZHU Cheng. A Comparison of Cadmium-Accumulation-Associated Genes Expression and Molecular Regulation Mechanism between Two Rice Cultivars (Oryza sativa L. subspecies japonica) [J]. Acta Agron Sin, 2014, 40(04): 581-590.
[7] LUO Mao,PENG Hua,SONG Rui,GAO Jian,PAN Guang-Tang,ZHANG Zhi-Ming. Functional Analysis of miRNA Resistant to Banded Leaf-Sheath Blight in Maize [J]. Acta Agron Sin, 2013, 39(05): 837-844.
[8] WU Shao-Hua,ZHANG Hong-Yu,XUE Jing-Jing,XU Pei-Zhou,WU Xian-Jun. DNA Methylation Site Analysis of Haploid, Diploid and Hybrids in Twin-Seedling Rice [J]. Acta Agron Sin, 2013, 39(01): 50-59.
[9] WANG Bian-Yin, ZHAI Jun, HAO Yuan-Feng, LI An-Fei, KONG Lian-Rang. Microsatellite Variation in Synthetic Hexaploid Wheat [J]. Acta Agron Sin, 2011, 37(08): 1491-1496.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!