Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (12): 2154-2161.doi: 10.3724/SP.J.1006.2013.02154

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Diversity and Linkage Disequilibrium Analysis in Barley

LAI Yong1,2,**,MENG Ya-Xiong1,2,**,WANG Jin1,2,FAN Gui-Qiang1,2,SI Er-Jing1,2,WANG Peng-Xi1,2,LI Bao-Chun3,MA Xiao-Le2,YANG Ke1,2,SHANG Xu-Wu2,WANG Hua-Jun1,2,*   

  1. 1 Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement / Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China; 2 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; 3 College of Life Sciences and Technology of Gansu Agricultural University, Lanzhou 730070, China
  • Received:2013-05-08 Revised:2013-07-26 Online:2013-12-12 Published:2013-09-29
  • Contact: 王化俊,E-mail: whuajun@yahoo.com

Abstract:

The objective of this study was to provide a suitable evaluation for introduced germplasm resources and useful information for associate analysis and parental combinations in barley (Hordeum valgare L.). A total of 192 alleles were detected by 64 SSR markers on chromosomes 1H to 7H in 221 barley accessions with 2–7 alleles per locus. The allelic frequency ranged from 0.0090 to 0.9729, with the mean of 0.3333. The gene diversity was from 0.0528 to 0.7807, averagely 0.4813. The polymorphism information content (PIC) value ranged from 0.0514 to 0.7464 with the mean of 0.4113. The genetic similarity of the 221 accessions ranged from 0.4844 to 0.9792 with the mean of 0.7023. All accessions were clustered into two major groups and seven subgroups. Most landraces or developed varieties fell into the same major group. Genetic structure analysis revealed two subpopulations of these accessions, with consistence to the clustering analysis. Genetic distance between the two subpopulations was 0.3358, and the second subpopulation had richer diversity than the first one. There was linkage disequilibrium (LD) among linked loci and unlinked loci pairs, and 830 out of 2016 loci pairs (41.2%) had significant LD (P < 0.01) with D′ average value of 0.4. The LD level of developed variety was higher than that of landraces. Target traits of developed varieties were mainly distributed on chromosomes 2H, 4H, 6H, and 7H.

Key words: Barley, SSR, Genetic diversity, Linkage disequilibrium, Association analysis

[1]Tanksley S D, McCouch S R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 1997, 277: 1063–1064



[2]Bhagwat A A, Cregan P B, Akkaya M S. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics, 1992, 132: 1131–1139



[3]Saghai-Maroof M A, Biyashev R M, Yang G P, Zhang Q, Allard R W. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA, 1994, 91: 5466–5470



[4]Weber J L. Informativeness of human (dC-dA)n.(dG-dT)n polymorphism. Genomics, 1990, 7: 524–530



[5]Wang Z, Weber J L, Zhong G, Tanksley S D. Survey of plant short tandem DNA repeats. Theor Appl Genet, 1994, 88: 1–6



[6]Matus I A, Hayes P M. Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome, 2002, 45: 1095–1106



[7]Brantestam A K, Bothmer R, Dayteg C, Rashal I, Tuvesson S, Weibull J. Genetic diversity changes and relationships in spring barley (Hordeum vulgare L.) germplasm of Nordic and Baltic areas as shown by SSR markers. Genet Resour Crop Evol, 2007, 54: 749–758



[8]Sun D F, Ren W B, Sun G L, Peng J H. Molecular diversity and association mapping of quantitative traits in Tibetan wild and worldwide originated barley (Hordeum vulgare L.) germplasm. Euphytica, 2011, 178: 31–43



[9]Teulat B, Borries C, This D. New QTLs identified for plant water status, water-soluble carbohydrate and osmotic adjustrnent in a barley population grown in a growth-chamber under two water regimes. Theor Appl Genet, 2001, 103: 161–170



[10]Korff M, Wang H, Léon J, Pillen K. AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet, 2006, 112: 1221–1231



[11]Shahinnia F, Druka A, Franckowiak J, Morgante M, Waugh R, Stein N. High resolution mapping of dense spike-ar (dsp.ar) to the genetic centromere of barley chromosome 7H. Theor Appl Genet, 2012, 124: 373–384



[12]Flint-Garcia S A, Thornsberry J M, Buckler I V. Structure of linkage disequilibrium in plants. Ann Rev Plant Biol, 2003, 54: 357–374



[13]Zondervan K T, Cardon L R. The complex interplay among factors that influence allelic association. Nat Rev Genet, 2004, 5: 89–100



[14]Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Mol Biol, 2005, 57: 461–485



[15]Maccaferri M, Sanguineti M C, Enrico N, Roberto T. Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed, 2005, 15: 271–289



[16]Flint-Garcia S A, Thuillet A C, Yu J M, Pressoir G, Romero S M, Sharon E, Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler IV E S. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J, 2005, 44: 1054–1064



[17]Huang X H, Wei X H, Sang T, Zhao Q, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A H, Wang L, Deng L W, Li W J, Lu Y Q, Weng Q J, Liu K Y, Huang T, Zhou T Y, Jing Y F, Li W, Lin Z, Buckler E S, Qian Q, Zhang Q F, Li J Y, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42: 961–967



[18]Kraakman A T W, Martnez F, Mussiraliev B, Eeuwijk F A, Niks R E. Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Mol Breed, 2006, 17: 41–58



[19]Katherine S C, Joanne R, Peter L, Wayne P. Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics, 2006, 172: 557–567



[20]Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122–127



[21]Maccaferri M, Sanguineti M C, Noli E, Tuberosa R. Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed, 2005, 15: 271–290



[22]Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611–2620



[23]Guo H, Wei Y M, Chen F, Zheng Y L. Genetic diversity of Hordeum bogdanii wilensky native to Xinjiang, China, based on STS_PCR markers. Acta Bot Sin, 2002, 44: 1327–1332



[24]Shi Y-T(施永泰), Bian H-W(边红武), Han N(韩凝), Pan J-W(潘建伟), Tong W-X(童微星), Zhu M-Y(朱睦元.). Genetic variation analysis by RAPD of some barley cultivars in China. Acta Agron Sin(作物学报), 2004, 30(3): 258–265 (in Chinese with English abstract)



[25]Zhang C-H(张赤红), Zhang J(张京). Genetic diversity assessment of barley germplasm resources using SSR markers. J Triticeae Crops(麦类作物学报), 2008, 28(2): 214–219 (in Chinese with English abstract)



[26]Liu Z-M(刘志敏), Jin N(金能), Lü C(吕超), Huang Z-L(黄祖六), Xu R-G(许如根). Genetic diversity analysis of barley varieties by SSR. J Triticeae Crops(麦类作物学报), 2011, 31(5): 839–846 (in Chinese with English abstract)



[27]Maroof M A S, Biyashev R M, Yang G P, Zhang Q, Allard R W. Extraordinarily polymorphic microsatellite DNA in barley, species diversity, chromosomal locations and population dynamics. Proc Natl Acad Sci USA, 1994, 91: 5466–5470



[28]Struss D, Plieske J. The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet, 1998, 97: 308–315



[29]Hansen M, Kraft T, Ganestam S, Sall T, Nilsson N O. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers. Genet Res, 2001, 77: 61–66



[30]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler IV E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286–289



[31]Stracke S, Perovic D, Stein N, Thiel T, Graner A. Linkage disequilibrium in barley. In: 11th Molecular Markers Symposium of the GPZ, 2003. http://meetings.ipk-gater-sleben.de/moma2003/index.php.



[32]Kraakman A T W, Niks R E, Van den Berg P M M M, Stam P, Van Eeuwijk F A. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics, 2004, 168: 435–446

[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[3] YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190.
[4] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[5] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[6] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[7] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[8] HE Jun-Yu, ZHONG Wei, CHEN Yun-Qiong, WANG Wei-Bin, XIONG Jing-Lei, JIANG Ya-Li, SHI Hui-Meng, CHEN Sheng-Wei. Analysis on the accumulation characteristics of seven flavonoids at grain development stage in barley [J]. Acta Agronomica Sinica, 2021, 47(8): 1624-1630.
[9] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[10] LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258.
[11] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[12] TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426.
[13] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[14] JIANG Wei, PAN Zhe-Chao, BAO Li-Xian, ZHOU Fu-Xian, LI Yan-Shan, SUI Qi-Jun, LI Xian-Ping. Genome-wide association analysis for late blight resistance of potato resources [J]. Acta Agronomica Sinica, 2021, 47(2): 245-261.
[15] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!