Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (04): 585-592.doi: 10.3724/SP.J.1006.2015.00585

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Functional Analysis and Mapping of Gene P2SA2 Involved in Hypocotyl Phototropism of Arabidopsis thaliana

ZHAO Qing-Ping,ZHAO Xiang,MU Shi-Chao,XIAO Hui-Li,ZHANG Xiao*   

  1. State Key Laboratory of Cotton Biology / Key Laboratory of Plant Stress Biology / College of Life Sciences, Henan University, Kaifeng 475004, China
  • Received:2014-08-22 Revised:2015-02-06 Online:2015-04-12 Published:2015-03-02
  • Contact: 张骁, E-mail: xzhang@henu.edu.cn E-mail:xzhang@henu.edu.cn

Abstract:

PHOT1 functions at both low and high-intensity blue light to mediate phototropic responses, but PHOT2 functions only at high-intensity blue light. The functional redundancy of PHOT1 and PHOT2 on high-intensity blue light-induced phototropic curvature of hypocotyls in Arabidopsis thaliana, restricts the understanding of the mechanism of PHOT2 signal transduction. Therefore, in order to avoid the interference of PHOT1, Arabidopsis phot1 mutant was selected as material for screening high blue light insensitive mutants by the EMS mutation, and we successfully screened and cloned the gene P2SA2 (phototropin2 signaling associated 2). The gene P2SA2 turned out to be the allelic of NPH3 (Nonphototropic hypocotyl 3). The mutation of gene P2SA2 could result in that Arabidopsis thaliana lost the phototropism to unilateral high intensity blue light. Transgenic plants of p2sa2 35S::P2SA2 restored hypocotyl phototropism to high intensity blue light. These findings will open new perspectives about the screening and functional identification of PHOT2 downstream genes in response to high blue light, and provide the theoretical basis to uncover hypocotyl bending mechanism regulated by PHOT2.

Key words: Arabidopsis thaliana, Blue light, Phototropism, Map-based cloning

[1]Huala E, Oeller P W, Liscum E, Han I S, Larsen E, Briggs W R. Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science, 1997, 278: 2120–2123



[2]Demarsy E, Fankhauser C. Higher plants use LOV to perceive blue light. Curr Opin Plant Biol, 2009, 12: 69–74



[3]Christie J M. Phototropin blue-light receptors. Annu Rev Plant Biol, 2007, 58: 21–45



[4]Sakai T, Kagawa T, Kasahara M, Swartz T E, Christie J M, Briggs W R, Wada M, Okada K. Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA, 2001, 98: 6969–6974



[5]Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K. phot1 and phot2 mediate blue light regulation of stomatal opening. Nature, 2001, 414: 656–660



[6]Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M. Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science, 2001, 291: 2138–2141



[7]Carbonnel M D, Davis P, Roelfsema M R, Inoue S, Schepens I, Lariguet P, Geisler M, Shimazaki K, Hangarter R, Fankhauser C. The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and Leaf Positioning. Plant Physiol, 2010, 152: 1391–1405



[8]Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M. Chloroplast avoidance movement reduces photodamage in plant. Nature, 2002, 420: 829–832



[9]Takemiya A, Inoue S, Doi M, Kinoshita T, Shimazaki K. Phototropins promote plant growth in response to blue light in low light environments. Plant Cell, 2005, 17: 1120–1127



[10]Briggs W R, Christie J M. Phototropins 1 and 2: Versatile plant blue-light receptors. Trends Plant Sci, 2002, 7: 204–210



[11]Motchoulski A, Liscum E. Arabidopsis NPH3: a NPH1 photoreceptor-interacting protein essential for phototropism. Science, 1999, 286: 961–964



[12]Inada S, Ohgishi M, Mayama T, Okada K, Sakai T. RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell, 2004, 16: 887–896



[13]Lariguet P, Schepens I, Hodgson D, Pedmale U V, Trevisan M, Kami C, de Carbonnel M, Alonso J M, Ecker J R, Liscum E, Fankhauser C. PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin1 binding protein required for phototropism. Proc Natl Acad Sci USA, 2006, 103: 10134–10139



[14]Blakeslee J J, Bandyopadhyay A, Peer W A, Makam S N, Murphy A S. Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol, 2004, 134: 28–31



[15]Stone B B, Stowe-Evans E L, Harper R M, Celaya R B, Ljung K, Sandberg G, Liscum E. Distruption in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. Mol Plant, 2008, 1: 129–144



[16]Sakai T, Wada T, Ishiguro S, Okada K. RPT2: A signal transducer of the phototropic response in Arabidopsis. Plant Cell, 2000, 12: 225–236



[17]Tseng T S and Briggs W R. The Arabidopsis rcn1-1 mutation impairs dephosphorylation of phot2, resulting in enhanced blue light responses. Plant Cell, 2010, 22: 392–402



[18]Doi M, Shigenaga A, Emi T, Kinoshita T, Shimazaki K I. A transgene encoding a blue-light receptor, phot1, restores blue-light responses in the Arabidopsis phot1phot2 double mutant. J Exp Bot, 2004, 396: 517–523



[19]赵翔, 王琳丹, 李园园, 赵青平, 张骁. PHOT2介导拟南芥下胚轴向光弯曲调节子的筛选与鉴定. 植物学报, 2014, 49: 254–261



Zhao X, Wang LD, Li Y Y, Zhao Q P, Zhang X. Isolation and characterization of regulators involved in PHOT2-mediated phototropismof hypocotyls in Arabidopsis. Chin Bull Bot, 2014, 49: 254–261 (in Chinese with English abstract)



[20]Zhao X, Wang Y L, Qiao X R, Wang J, Wang L D, Xu C S, Zhang X. Phototropins function in high-intensity blue light-induced hypocotyl phototropism in Arabidopsis by altering cytosolic calcium. Plant Physiol, 2013, 162: 1539–1551



[21]Briggs W R, Beck C F, Cashmore A R. The phototropin family of photoreceptors. Plant Cell, 2001, 13: 993–997



[22]Pedmale U V, Liscum E. Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3. J Biol Chem, 2007, 282: 19992–20001



[23]Harper R M, Stowe-Evans E L, Luesse D R, Muto H, Tatematsu K, Watahiki M K, Yamamoto K, Liscum E. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell, 2000, 12: 757–770



[24]Liscum E, Briggs W R. Mutations of Arabidopsis in potential transduction and response components of the phototropic signaling pathway. Plant Physiol, 1996, 112: 291–296



[25]de Carbonnel M, Davis P, Roelfsema M R, Inoue S, Schepens I, Lariguet P, Geisler M, Shimazaki K, Hangarter R, Fankhauser C. The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning. Plant Physiol, 2010, 152: 1391–1405



[26]Tsuchida-Mayama T, Nakano M, Uehara Y, Sano M, Fujisawa N, Okada K, Sakai T. Mapping of the phosphorylation sites on the phototropic signal transducer, NPH3. Plant Sci, 2008, 174: 626–633



[27]Knauer T, Dümmer M, Landgraf F, Forreiter C. A negative effector of blue light-induced and gravitropic bending in Arabidopsis. Plant Physiol, 2011, 156: 439–447



[28]Harada A, Shimazaki K. Phototropins and blue light-dependent calcium signaling in higher plants. Photochem Photobiol, 2007, 83: 102–111

[1] LI Jing-Lin, LI Jia-Lin, LI Xin-Peng, AN Bao-Guang, ZENG Xiang, WU Yong-Zhong, HUANG Pei-Jing, LONG Tuan. Creation and combining ability analysis of recessive genic sterile lines with a new ptc1 locus in rice [J]. Acta Agronomica Sinica, 2021, 47(11): 2173-2183.
[2] Xiang ZHAO,Zi-Yi ZHU,Xiao-Nan WANG,Shi-Chao MU,Xiao ZHANG. Functional Analysis of Hypocotyl Phototropism Modulated by RPT2-Interacting Protein RIP1 in Arabidopsis thaliana L. [J]. Acta Agronomica Sinica, 2018, 44(12): 1802-1808.
[3] LIU Ling-Yun,LIU Hao,ZHAO Jing,WANG Yan-Xia,WANG Peng-Tao*. Map-based Cloning and Functional Analysis of Low Chlorophyll Fluorescence Gene LCF3 in Arabidopsis thaliana [J]. Acta Agron Sin, 2016, 42(05): 690-695.
[4] NIU Jing,CHEN Sai-Hua*,ZHAO Jie-Yu,ZENG Zhao-Qiong,CAI Mao-Hong,ZHOU Liang,LIU Xi,JIANG Ling,WAN Jian-Min. Identification and Map-based Cloning of rad-1 and rad-2, Two Rice Architecture Determinant Mutants [J]. Acta Agron Sin, 2015, 41(11): 1621-1631.
[5] ZHANG Tao,SUN Yu-Ying,ZHENG Jian-Min,CHENG Zhi-Jun,JIANG Kai-Feng,YANG Li,CAO Ying-Jiang,YOU Shu-Mei,WAN Jian-Min,ZHENG Jia-Kui. Genetic Analysis and Fine Mapping of a Premature Leaf Senescence Mutant in Rice (Orzya sativa L.) [J]. Acta Agron Sin, 2014, 40(12): 2070-2080.
[6] LIU Da-Tong,JING Yan-Ping,SHI Hai-Xiang,ZHONG Ting-Ting,WANG Zhong* . Impact of IAA, GA3, and ABA on Negative Root Phototropism and Root Growth of Rice [J]. Acta Agron Sin, 2014, 40(09): 1658-1666.
[7] LIU Jiang,SUN Quan-Xi,LI Xin-Zheng,QI Bao-Xiu. Functional Characterization of Isochrysis galbana Δ5 Desaturase Gene IgD5 in Arabidopsis thaliana [J]. Acta Agron Sin, 2013, 39(05): 928-934.
[8] WANG Yue-Xia,WANG Zhong,LIU Quan-Jun,ZHAO Hui-Jie,GU Yun-Jie,et al.. Relationship between cpt1 Gene and the Negative Phototropism in Rice Roots [J]. Acta Agron Sin, 2009, 35(8): 1558-1561.
[9] ZHU Yong-Xing;WANG Lei;ZHANG Lan;ZHANG Wei;FAN Yun-Liu. Isolation and Characterization of Homogentisate Phytyltransferase (HPT) Gene Promoter from Arabidopsis thaliana [J]. Acta Agron Sin, 2007, 33(04): 554-559.
[10] Shi Hongzhi;Han Jinfeng;Guan Chunyun;Yuan Tong. Effects of Red and Blue Light Proportion on Leaf Growth,Carbon-Nitrogen Metabolism and Quality in Tobacco [J]. Acta Agron Sin, 1999, 25(02): 215-220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!