Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (04): 569-580.doi: 10.3724/SP.J.1006.2018.00569

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Application of Random Forest Method in Maize-soybean Accurate Identification

Li-Min WANG(), Jia LIU, Ling-Bo YANG, Fu-Gang YANG, Chang-Hong FU   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2017-05-08 Accepted:2018-01-08 Online:2018-01-26 Published:2018-01-26
  • Supported by:
    This study was supported by the National Science and Technology Major Project (09-Y30B03-9001-13/15) and the National Key Research and Development Program of China (2016YFD0300603).

Abstract:

It is very important to obtain the crop identification information based on remote sensing image. Remote sensing images have the advantages of high efficiency, high accuracy, low costs, and wide monitoring scope. Applying remote sensing images in maize-soybean accurate identification and planting area evaluation can give full play to the advantages of remote sensing images. Random forest classification (RFC) is a new classification method, a type of machine learning. Currently, there are very few studies on crop classification based on RFC. In order to evaluate the potential of the method on maize-soybean crop accurate identification, the paper conducted classification of major crops of soybean, maize, and other ground objects. Utilizing Landsat-8 OLI satellite image data, and three methods including maximum likelihood classification (MLC), support vector machine (SVM), and random forest classification (RFC). The overall classification accuracies of MLC, SVM, and RFC were 91.68%, 91.49%, and 94.32%, with their kappa coefficients of 0.87, 0.87, and 0.91, respectively, showing that RFC is better. The principal component analysis (PCA) was made on original seven wave band images, and the first four wave bands of the major components were extracted. Meanwhile, the normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were calculated; six additional supporting characteristic wave bands were overlapped on original seven wave band images, and the classifications with MLC, SVM, and RFC were conducted again. After adding characteristic wave bands, crop identification accuracies by MLC and SVM methods were not improved. The accuracy of RFC method was increased slightly with overall accuracy of 95.81% increasing by 1.49 percent, and Kappa coefficient of 0.94 increasing by 0.03, showing accuracy slightly increased, and limited improvement effect. Near-infrared band and two short infrared wave bands were most important, while newly added wave band was not significant for soybean-maize identification, showing the limited improvement effect of supporting wave band. SVM had the longest time spent on classification, with about 11 000 s; MLC the least, only 145 s; and RFC about 1800 s. It indicates that SVM doesn’t have any advantages in both accuracy and time-consumed, however, MLC can quickly get the classification results, and RFC has the highest classification accuracy with moderate time consumed. In conclusion, RFC has greater advantage in soybean-maize accurate identification, and is suitable to be widely applied in the operation of regional agriculture remote sensing monitoring crop area extraction.

Key words: Landsat-8, random forest, maize, soybean, remote sensing, identification capacity

Fig. 1

Location of study area"

Table 1

Radiometric calibration coefficient of Landsat 8 OLI image"

波段
Band
定标斜率
Gain
定标截距
Bias
海岸蓝波段 Coastal aerosol 0.01298 -64.89967
蓝 Blue 0.013292 -66.45805
绿 Green 0.012248 -61.24053
红 Red 0.010328 -51.64146
近红外 Near infrared 0.0063204 -31.602
短波红外1 SWIR 1 0.0015718 -7.85913
短波红外2 SWIR 2 0.00052979 -2.64895

Fig. 2

Landsat 8 OLI image and distribution of ground sample in study areaa: Landsat 8 image and distribution of ground samples; b: original image of sample; c: classification of sample."

Fig. 3

Spectral curves of main ground objects in study area"

Fig. 4

Technical flow chart of the study"

Fig. 5

Visual interpreting result based on the RapidEye imagea: Rapideye image (5/4/3 band); b: Result of manual visual interpretation based on RapidEye image."

Fig. 6

Classification results by three methods based on original imagea: maximum likelihood classification result; b: support vector machine classification result; c: random forest classification result; d: part of maximum likelihood classification result; e: part of support vector machine classification result; f: part of random forest classification result."

Table 2

Confusion matrix of three classification methods based on original image"

作物
Crop
分类方法
Method
大豆
Soybean (pixel)
玉米
Maize (pixel)
其他
Other (pixel)
总计
Total (pixel)
制图精度
Mapping accuracy (%)
大豆
Soybean
MLC 864849 15393 56545 936787 91.03
SVM 878082 7498 66202 951782 92.42
RFC 911841 9285 65006 986132 95.98
玉米
Maize
MLC 21443 1134475 76472 1232390 92.38
SVM 35185 1140200 93000 1268385 92.85
RFC 4158 1186858 68423 1259439 96.65
其他
Other
MLC 63758 78172 1436164 1578094 91.52
SVM 36783 80342 1409979 1527104 89.85
RFC 34051 31897 1435752 1501700 91.50
总计 Total (pixel) 950050 1228040 1569181 3747271
用户精度
User accuracy (%)
MLC 92.32 92.05 91.01
SVM 92.26 89.89 92.33
RFC 92.47 94.24 95.61
总体精度
Overall accuracy (%)
MLC 91.68 Kappa系数
Kappa coefficient
MLC 0.87
SVM 91.49 SVM 0.87
RFC 94.32 RFC 0.91

Fig. 7

Classification results of three methods based on the stacked imagea: maximum likelihood classification result; b: support vector machine classification result; c: random forest classification result; d: part of maximum likelihood classification result; e: part of support vector machine classification result; f: part of random forest classification result."

Table 3

Confusion matrix of three methods based on the stacked image"

作物
Crop
分类方法
Method
大豆
Soybean (pixel)
玉米
Maize (pixel)
其他
Other (pixel)
总计
Total (pixel)
制图精度
Mapping accuracy (%)
大豆
Soybean
MLC 857118 3824 56780 917722 90.22
SVM 885153 7611 66296 959060 93.17
RFC 934124 2276 55865 992265 98.32
玉米
Maize
MLC 56343 1201206 167854 1425403 97.81
SVM 31759 1145348 87264 1264371 93.27
RFC 2053 1205962 63085 1271100 98.20
其他
Other
MLC 36589 23010 1344547 1404146 85.68
SVM 33138 75081 1415621 1523840 90.21
RFC 13873 19802 1450231 1483906 92.42
总计 Total (pixel) 950050 1228040 1569181 3747271
用户精度
User accuracy (%)
MLC 93.40 84.27 95.76
SVM 92.29 90.59 92.90
RFC 94.14 94.88 97.73
总体精度
Overall accuracy (%)
MLC 90.81 Kappa系数
Kappa coefficient
MLC 0.86
SVM 91.96 SVM 0.88
RFC 95.81 RFC 0.94

Fig. 8

Variable importance before and after adding auxiliary featuresa: variable importance before adding auxiliary features; b: variable importance after adding auxiliary features."

Table 4

Classification time of the three methods"

分类方式
Classification method
分类时间
Time cost (s)
最大似然分类MLC 145
支持向量机SVM 11000
随机森林分类RFC 1800
[1] 许文波, 田亦陈. 作物种植面积遥感提取方法的研究进展. 云南农业大学学报, 2005, 20(1): 94-98
Xu W B, Tian Y C.Overview of extraction of crop area from remote sensing.J Yunnan Agric Univ, 2005, 20(1): 94-98 (in Chinese with English abstract)
[2] 尤淑撑, 孙毅, 李小文. 成像光谱技术在土地利用动态遥感监测中的应用研究. 遥感信息, 2005, (3): 31-33
You S C, Sun Y, Li X W.Reseach on landuse dynamic monitoring using high spectral resolution remote sensing data.Remote Sens Inf, 2005, (3): 31-33 (in Chinese with English abstract)
[3] Gleriani J M, da Silva J D S, Epiphanio J C N. Comparative performance of neural networks and maximum likelihood for supervised classification of agricultural crops: single date and temporal analysis.Radal Ba Fnon, 2004, 4: 2959-2964
[4] Liang Y J, Xu Z M.Crop identification in the irrigation district based on SPOT-5 satellite imagery.Pratacult Sci, 2013, 30: 161-167
[5] Baup F, Flanquart S, Maraissicre C, Fieuzal R.Satellite monitoring at high spatial resolution of water bodies used for irrigation purposes.Sci Technol Innovation Herald, 2012, 32(3): 103-119
[6] Luo B, Yang C, Chanussot J, Zhang L.Crop yield estimation based on unsupervised linear unmixing of multidate hyperspectral imagery.IEEE Trans Geosci Remote Sens, 2013, 51: 162-173
[7] Wu B, Li Q.Crop planting and type proportion method for crop acreage estimation of complex agricultural landscapes.Int J Appl Earth Obs Geoinf, 2012, 16: 101-112
[8] Long J A, Lawrence R L, Greenwood M C, Marshall L, Miller P R.Object-oriented crop classification using multitemporal ETM+ SLC-off imagery and random forest.Gisci Remote Sens, 2013, 50: 418-436
[9] Jiao X F, Kovacs J M, Shang J L, McNairn H, Walters D, Ma B L, Geng X Y. Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data.ISPRS J Photogramm Remote Sens, 2014, 96: 38-46
[10] Rosales H S, Bruno C, Balzarini M.Identifying yield and environment relationships using classification and regression trees (CART). Interciencia, 2010, 35: 876-882
[11] Arvor D, Jonathan M, Simoes M, Durieux L.Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil. Int J Remote Sens, 2011, 32: 7847-7871
[12] 李鑫川, 徐新刚, 王纪华, 武洪峰, 金秀良, 李存军, 鲍艳松. 基于时间序列环境卫星影像的作物分类识别. 农业工程学报, 2013, 29(2): 169-176.
Li X C, Xu X G, Wang J H, Wu H F, Jin X L, Li C J, Bao Y S.Crop classification recognition based on time-series images from HJ satellite.Trans CSAE, 2013, 29(2): 169-176 (in Chinese with English abstract)
[13] Kaur P, Singh S, Garg S, Harmanpreet. Analytical and CASE study on limited search, ID3, CHAID, C4.5, improved C4.5 and OVA decision tree algorithms to design decision support system.Strategic Change, 2010, 1324: 253-267
[14] Deng X, Zhao C, Yan H.Systematic modeling of impacts of land use and land cover changes on regional climate: a review.Adv Meteorol, 2013, 2013: 317678
[15] 刘建光, 李红, 孙丹峰, 张微微, 周连第. MODIS土地利用/覆被多时相多光谱决策树分类. 农业工程学报, 2010, 26(10): 312-318
Liu J G, Li H, Sun D F, Zhang W W, Zhou L D.Land use/cover decision tree classification fusing multi-temporal and multi-spectral of MODIS.Trans CSAE, 2010, 26(10): 312-331 (in Chinese with English abstract)
[16] 刘毅, 杜培军, 郑辉, 夏俊士, 柳思聪. 基于随机森林的国产小卫星遥感影像分类研究. 测绘科学, 2012, 37(04): 194-196
Liu Y, Du P J, Zheng H, Xia J S, Liu S C.Classification of China small satellite remote sensing image based on random forests.Sci Surv Mapping, 2012, 37(04): 194-196 (in Chinese with English abstract)
[17] 刘磊, 江东, 徐敏, 尹芳. 基于多光谱影像和专家决策法的作物分类研究. 安徽农业科学, 2011, 39(25): 1703-1706
Liu L, Jiang D, Xu M, Yin F.Crops classification based on multi-spectral image and decision tree method. J Anhui Agric Sci, 2011, 39(25): 1703-1706 (in Chinese with English abstract)
[18] 康峻, 侯学会, 牛铮, 高帅, 贾坤. 基于拟合物候参数的植被遥感决策树分类. 农业工程学报, 2014, 30(9): 148-156
Kang J, Hou X H, Niu Z, Gao S, Jia K.Decision tree classification based on fitted phenology parameters from remotely sensed vegetation data.Trans CSAE, 2014, 30(9): 148-156 (in Chinese with English abstract)
[19] 张旭东, 迟道才. 基于异源多时相遥感数据决策树的作物种植面积提取研究. 沈阳农业大学学报, 2014, 45: 451-456
Zhang X D, Chi D C.Mapping crop fields by using multi-sensor and multi-temporal remote sensing data with decision-tree.J Shenyang Univ, 2014, 45: 451-456 (in Chinese with English abstract)
[20] 黄健熙, 贾世灵, 武洪峰, 苏伟. 基于GF-1 WFV影像的作物面积提取方法研究. 农业机械学报, 2015, 46(1): 253-259
Huang J X, Jia S L, Wu H F, Su W.Extraction method of crop planted area based on GF-1 WFV Image.Trans CSAM, 2015, 46(1): 253-259 (in Chinese with English abstract)
[21] Kandrika S, Roy P S.Land use land cover classification of Orissa using multi-temporal IRS-P6 awifs data: A decision tree approach.Int J Appl Earth Obs Geoinf, 2008, 10: 186-193
[22] Peña J M, Gutiérrez P A, Hervás-Martínez C, Six J, Plant R E, López-Granados F.Object-based image classification of summer crops with machine learning methods.Remote Sens, 2014, 6: 5019-5041
[23] Pal M.Random forest classifier for remote sensing classification.Int J Remote Sens, 2007, 26: 217-222
[24] Gislason P O, Benediktsson J A, Sveinsson J R.Random forests for land cover classification.Pattern Recognit Lett, 2003, 27: 294-300
[25] Ok A O, Akar O, Gungor O.Evaluation of random forest method for agricultural crop classification.Eur J Remote Sens, 2012, 45: 421-432
[26] Deschamps B, Mcnairn H, Shang J, Jiao X.Towards operational radar-only crop type classification: comparison of a traditional decision tree with a random forest classifier.Can J Remote Sens, 2012, 38: 60-68
[27] 张晓羽, 李凤日, 甄贞, 赵颖慧. 基于随机森林模型的陆地卫星-8遥感影像森林植被分类. 东北林业大学学报, 2016, 44(6): 53-57
Zhang X Y, Li F R, Zhen Z, Zhao Y H.Forest vegetation classification of Landsat8 remote sensing image based on random forest model.J Northeast For Univ, 2016, 44(6): 53-57 (in Chinese with English abstract)
[28] 郭玉宝, 池天河, 彭玲, 刘吉磊, 杨丽娜. 利用随机森林的高分一号遥感数据进行城市用地分类. 测绘通报, 2016, (5): 73-76
Guo Y B, Chi T H, Peng L, Liu J L, Yang L N.Classification of GF-1 remote sensing image based on random forests for urban land-use.Bull Surv Mapping, 2016, (5): 73-76 (in Chinese with English abstract)
[29] 黄健熙, 侯矞焯, 苏伟, 刘峻明, 朱德海. 基于GF-1 WFV数据的玉米与大豆种植面积提取方法. 农业工程学报, 2017, 33(7): 164-170
Huang J X, Hou Y Z, Su W, Liu J M, Zhu D H.Mapping corn and soybean cropped area with GF-1 WFV data.Trans CSAE, 2017, 33(7): 164-170 (in Chinese with English abstract)
[30] 王利民, 刘佳, 杨玲波, 杨福刚, 富长虹. 短波红外波段对玉米大豆种植面积识别精度的影响. 农业工程学报, 2016, 32(19): 169-178
Wang L M, Liu J, Yang L B, Yang F G, Fu C H.Impact of short infrared wave band on identification accuracy of corn and soybean area.Trans CSAE, 2016, 32(19): 169-178 (in Chinese with English abstract)
[31] 王增林, 朱大明. 基于遥感影像的最大似然分类算法的探讨. 河南科学, 2010, 28: 1458-1461
Wang Z L, Zhu D M.A study of maximum likelihood classification algorithm based on remote sensing image.Henan Sci, 2010, 28: 1458-1461 (in Chinese with English abstract)
[32] Cortes C, Vapnik V.Support-vector networks.Mach Learn, 1995, 20: 273-297
[33] Breiman L.Random forests.Machine Learning, 2001, 45: 5-32
[34] Congalton R G.A Review of assessing the accuracy of classifications of remotely sensed data.Remote Sens Environ, 1991, 37: 35-46
[35] Hay A M.The derivation of global estimation from a confusion matrix.Int J Remote Sens, 1988, 9: 1395-1398
[36] Congalton R G.A comparison of sampling schemes used in generating error matrices for assessing the accuracy of maps generated from remotely sensing data. Photogramm Eng Remote Sens, 1988, 54: 593-600
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[3] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[4] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[5] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[6] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[7] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[8] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[9] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[10] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[11] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[12] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[13] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[14] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[15] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!