Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (3): 354-364.doi: 10.3724/SP.J.1006.2019.84095
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
Hong-Ju JIAN,Bo YANG,Yang-Yang LI,Hong YANG,Lie-Zhao LIU,Xin-Fu XU,Jia-Na LI()
[1] |
Bouché F, Lobet G, Tocquin P, Périlleux C . FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucl Acids Res, 2016,44(D1):D1167-D1171.
doi: 10.1093/nar/gkv1054 pmid: 26476447 |
[2] |
Srikanth A, Schmid M . Regulation of flowering time: all roads lead to Rome . Cell Mol Life Sci, 2011,68:2013-2037.
doi: 10.1007/s00018-011-0673-y pmid: 21611891 |
[3] |
Putterill J, Laurie R, Macknight R . It’s time to flower: the genetic control of flowering time . Bioessays, 2004,26:363-373.
doi: 10.1002/(ISSN)1521-1878 |
[4] |
Roux F, Touzet P, Cuguen J, Le Corre V . How to be early flowering: an evolutionary perspective . Trends Plant Sci, 2006,11:375-381.
doi: 10.1016/j.tplants.2006.06.006 pmid: 16843035 |
[5] | Fornara F, de Montaigu A, Coupland G . SnapShot: control of flowering in Arabidopsis . Cell, 2010,141(3), doi: 10.1016/j.cell. 2010.04.024. |
[6] |
Turck F, Fornara F, Coupland G . Regulation and identity of florigen: FLOWERING LOCUS T moves center stage . Annu Rev Plant Biol, 2008,59:573-594.
doi: 10.1109/TASC.2007.898014 pmid: 18444908 |
[7] |
Kikuchi R, Kawahigashi H, Ando T, Tonooka T, Handa H . Molecular and functional characterization of PEBP genes in barley reveal the diversification of their roles in flowering. Plant Physiol, 2009,149:1341-1353.
doi: 10.1104/pp.108.132134 pmid: 19168644 |
[8] | Karlgren A, Gyllenstrand N, Källman T, Sundström J F, Moore D, Lascoux M, Lagercrantz U . Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiol, 2011,156:1967-1977. |
[9] | Tao Y B, Luo L, He L L, Ni J, Xu Z F . A promoter analysis of MOTHER OF FT AND TFL1 1 (JcMFT1), a seed-preferential gene from the biofuel plant Jatropha curcas. J Plant Res, 2014,127:513-524. |
[10] |
Peng F Y, Hu Z, Yang R C . Genome-wide comparative analysis of flowering-related genes in Arabidopsis, wheat, and barley. Int J Plant Genomics, 2015,2015:874361.
doi: 10.1155/2015/874361 pmid: 4576011 |
[11] | Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T . TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol, 2005,46:1175-1189. |
[12] | Huang N C, Jane W N, Chen J, Yu T S . Arabidopsis thaliana CENTRORADIALIS homologue( ATC) acts systemically to inhibit floral initiation in Arabidopsis. Plant J, 2012,72:175-184. |
[13] | Yoo S Y, Kardailsky I, Lee J S, Weigel D, Ahn J H . Acceleration of flowering by overexpression of MFT (MOTHER OF FT AND TFL1). Mol Cells, 2004,17:95-101. |
[14] |
Kardailsky I, Shukla V K, Ahn J H, Dagenais N, Christensen S K, Nguyen J T, Chory J, Harrison M J, Weigel D . Activation tagging of the floral inducer FT. Science, 1999,286:1962-1965.
doi: 10.1126/science.286.5446.1962 |
[15] |
Jang S, Torti S, Coupland G . Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. Plant J, 2009,60:614-625.
doi: 10.1111/j.1365-313X.2009.03986.x pmid: 19656342 |
[16] |
Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E . Inflorescence commitment and architecture in Arabidopsis . Science, 1997,275:80-83.
doi: 10.1126/science.275.5296.80 pmid: 8974397 |
[17] | Ratcliffe O J, Bradley D J, Coen E S . Separation of shoot and floral identity in Arabidopsis . Development, 1999,126:1109-1120. |
[18] | Conti L, Bradley D . TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant Cell, 2007,19:767-778. |
[19] |
Hanano S, Goto K . Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell, 2011,23:3172-3184.
doi: 10.1105/tpc.111.088641 |
[20] |
Ryu J Y, Lee H J, Seo P J, Jung J H, Ahn J H, Park C M . The Arabidopsis floral repressor BFT delays flowering by competing with FT for FD binding under high salinity . Mol Plant, 2014,7:377-387.
doi: 10.1093/mp/sst114 pmid: 23935007 |
[21] |
Xi W, Liu C, Hou X, Yu H . MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell, 2010,22:1733-1748.
doi: 10.4161/psb.5.10.13161 pmid: 20551347 |
[22] |
Wang Z, Zhou Z, Liu Y, Liu T, Li Q, Ji Y, Li C, Fang C, Wang M, Wu M, Shen Y, Tang T, Ma J, Tian Z . Functional evolution of phosphatidylethanolamine binding proteins in soybean and Arabidopsis . Plant Cell, 2015,27:323-336.
doi: 10.1105/tpc.114.135103 pmid: 25663621 |
[23] |
Nan H, Cao D, Zhang D, Li Y, Lu S, Tang L, Yuan X, Liu B, Kong F . GmFT2a and GmFT5a redundantly and differentially regulate flowering through interaction with and upregulation of the bZIP transcription factor GmFDL19 in soybean. PLoS One, 2014,9:0097669.
doi: 10.1371/journal.pone.0097669 pmid: 24845624 |
[24] |
Chardon F, Damerval C . Phylogenomic analysis of the PEBP gene family in cereals. J Mol Evol, 2005,61:579-590.
doi: 10.1007/s00239-004-0179-4 pmid: 16170456 |
[25] | Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K . Hd3a and RFT1 are essential for flowering in rice. Development, 2008,135:767-774. |
[26] |
Meng X, Muszynski M G, Danilevskaya O N . The FT-Like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell, 2011,23:942-960.
doi: 10.1105/tpc.110.081406 pmid: 21441432 |
[27] |
Raman H, Raman R, Coombes N, Song J, Prangnell R, Bandaranayake C, Tahira R, Sundaramoorthi V, Killian A, Meng J, Dennis E S, Balasubramanian S . Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola . Plant Cell Environ, 2016,39:1228-1239.
doi: 10.1111/pce.12644 pmid: 26428711 |
[28] |
Xu L, Hu K, Zhang Z, Guan C, Chen S, Hua W, Li J, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T . Genome-wide association study reveals the genetic architecture of flowering time in rapeseed ( Brassica napus L.). DNA Res, 2016,23:43-52.
doi: 10.1093/dnares/dsv035 |
[29] |
Wang J, Qiu Y, Cheng F, Chen X, Zhang X, Wang H, Song J, Duan M, Yang H, Li X . Genome-wide identification, characterization, and evolutionary analysis of flowering genes in radish ( Raphanus sativus L.). BMC Genomics, 2017,18, doi: 10.1186/s12864-017-4377-z.
doi: 10.1186/s12864-017-4377-z |
[30] |
Zhang X, Wang C, Pang C, Wei H, Wang H, Song M, Fan S, Yu S . Characterization and functional analysis of PEBP family genes in upland cotton ( Gossypium hirsutum L.). PLoS One, 2016,11:0161080.
doi: 10.1371/journal.pone.0161080 pmid: 725 |
[31] | Książkiewicz M, Rychel S, Nelson M N, Wyrwa K, Naganowska B, Wolko B . Expansion of the phosphatidylethanolamine binding protein family in legumes: a case study of Lupinus angustifolius L. FLOWERING LOCUS T homologs, LanFTc1 and LanFTc2. BMC Genomics, 2016,17, doi: 10.1186/s12864-016-3150-z. |
[32] | Leeggangers H A C F, Rosilio-Brami T, Bigas-Nadal J, Rubin N, van Dijk A D J, Nunez de Caceres Gonzalez F F, Saadon-Shitrit S, Nijveen H, Hilhorst H W M, Immink R G H, Zaccai M . Tulipa gesneriana and Lilium longiflorum PEBP genes and their putative roles in flowering time control. Plant Cell Physiol, 2018,59:90-106. |
[33] |
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S . MEGA6: molecular evolutionary genetics analysis version 6.0 . Mol Biol Evol, 2013,30:2725-2729.
doi: 10.1093/molbev/mst197 |
[34] |
Wang D P, Wan H L, Zhang S, Yu J . Gamma-MYN: a new algorithm for estimating Ka and Ks with consideration of variable substitution rates . Biol Direct, 2009,4, doi: 10.1186/1745-6150-4-20.
doi: 10.1186/1745-6150-4-20 pmid: 2702329 |
[35] |
Danilevskaya O N, Meng X, Hou Z, Ananiev E V, Simmons C R . A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol, 2008,146:250-264.
doi: 10.1104/pp.107.109538 pmid: 17993543 |
[36] |
Guo Y, Hans H, Christian J, Molina C . Mutations in single FT- and TFL1-paralogs of rapeseed( Brassica napus L.) and their impact on flowering time and yield components. Front Plant Sci, 2014,5:282.
doi: 10.3389/fpls.2014.00282 pmid: 4060206 |
[37] |
Carmona M J, Calonje M , Martínez-Zapater J M. The FT/TFL1 gene family in grapevine. Plant Mol Biol, 2007,63:637-650.
doi: 10.1007/s11103-006-9113-z pmid: 17160562 |
[38] | Carmel-Goren L, Liu Y S, Lifschitz E, Zamir D . The SELF- PRUNING gene family in tomato. Plant Mol Biol, 2003,52:1215-1222. |
[39] |
Hedman H, Källman T, Lagercrantz U . Early evolution of the MFT-like gene family in plants. Plant Mol Biol, 2009,70:359-369.
doi: 10.1007/s11103-009-9478-x pmid: 19288213 |
[40] |
Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T . A pair of related genes with antagonistic roles in mediating flowering signals . Science, 1999,286:1960-1962.
doi: 10.1126/science.286.5446.1960 |
[41] |
Baumann K, Venail J, Berbel A, Domenech M J, Money T, Conti L, Hanzawa Y, Madueno F, Bradley D . Changing the spatial pattern of TFL1 expression reveals its key role in the shoot meristem in controlling Arabidopsis flowering architecture. J Exp Bot, 2015,66:4769-4780.
doi: 10.1093/jxb/erv247 pmid: 4507777 |
[42] | Yoo S J, Chung K S, Jung S H, Yoo S Y, Lee J S, Ahn J H . BROTHER OF FT AND TFL1 (BFT) has TFL1-like activity and functions redundantly with TFL1 in inflorescence meristem development in Arabidopsis. Plant J, 2010,63:241-253. |
[1] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[2] | JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839. |
[3] | YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850. |
[4] | HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607. |
[5] | JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623. |
[6] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[7] | WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510. |
[8] | YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069. |
[9] | LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798. |
[10] | TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990. |
[11] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[12] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[13] | JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649. |
[14] | TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426. |
[15] | YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415. |
|