Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (01): 31-39.doi: 10.3724/SP.J.1006.2020.94036

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening of NFR1α-interactive proteins in soybean using yeast two hybrid system

KE Dan-Xia(),PENG Kun-Peng   

  1. College of Life Sciences, Xinyang Normal University/Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang 464000, Henan, China
  • Received:2019-03-07 Accepted:2019-08-09 Online:2020-01-12 Published:2019-09-02
  • Contact: Dan-Xia KE E-mail:kdx_029@163.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31400213);Science and Technology Research Projects of Henan Province(182102110448);Nanhu Scholars Program for Young Scholars of XYNU

Abstract:

Soybean is the important plant protein crop and grain-bean intercropping crop. Exploring the biological nitrogen fixation potential of soybean is of far-reaching significance to promote the sustainable development of ecological agriculture. GmNFR1α, a soybean nod factor receptor protein, is very important for nodulation, but its specific regulatory mechanism is still unclear. Soybean mRNA was used as template to amplify the kinase domain of GmNFR1α protein (GmNFR1α-pk) by RT-PCR method and the pGBKT7-GmNFR1α-pk bait plasmid was constructed. Seventy-two positive clones interacted with GmNFR1α-pk were isolated through yeast two hybrid screening of soybean nodule AD-cDNA library from the library. Among them, 12 proteins including calcium ion binding chiral protein, hemoglobin, nodulin Nod44 and other proteins interacted with GmNFR1α-pk were screened by sequencing and homology analysis. The interaction between soybean hemoglobin and bait protein was verified by re-transforming in yeast and BiFC in tobacco. Comparison of homologous proteins and phylogenetic tree analysis were also done at the same time. The important function of GmLbc2 in nodulation process was clarified by hairy root transformation technology in Lotus japonicus. The results further complement and improve the signal transduction pathway mediated by GmNFR1α, and provide new molecular evidence for the symbiotic interaction mechanism between soybean and rhizobia.

Key words: soybean, symbiotic nitrogen fixation, nod factor receptor protein, yeast two-hybrid, soybean hemoglobin

Fig. 1

Construction and auto-activation test of the bait plasmid pGBKT7-GmNFR1α-pk (A) M: trans 2K Plus II DNA marker; 1: isolation of GmNFR1α-pk cDNA; 2: pGBKT7-GmNFR1α-pk digested by EcoR I and Sal I; 3: pGBKT7 digested by EcoR I and Sal I. (B) positive control (pGBKT7-53 and pGADT7-T). (C) negative control (pGBKT7-lam and pGADT7-T). (D) pGBKT7-GmNFR1α-pk and pGADT7."

Fig. 2

Screening of yeast two-hybrid cDNA library (A) positive clones on QDO/X/A plate; (B) PCR detection of inserts from yeast two-hybrid cDNA library."

Fig. 3

Interaction between GmNFR1α and GmLbc2 (A) yeast two-hybrid analysis of interaction between GmNFR1α-pk and GmLbc2. 1: positive control (pGBKT7-53 and pGADT7-T); 2: negative control (pGBKT7-lam and pGADT7-T); 3: pGBKT7-GmNFR1α-pk and pGADT7-GmLbc2. (B) BiFC analysis of interaction between GmNFR1α and GmLbc2."

Fig. 4

Amino acid sequence alignment analysis of GmLbc2 and its homologous proteins in some other plants Gm: Glycine max; Gs: Glycine soja; Cc: Cajanus cajan; Va: Vigna angularis; Vr: Vigna radiata; Mt: Medicago truncatula; Lj: Lotus japonicus; As: Astragalus sinicus."

Fig. 5

Phylogenetic tree of GmLbc2 and its homologs The scale represents genetic similarity, indicating the proximity relationships among species. Abbreviations are the same as those given in Fig. 4."

Fig. 6

Effect of GmLbc2 overexpression on nodulation in L. japonicus (A) phenotype of hairy roots expressing p1301U (CK). (B) phenotype of hairy roots overexpressing GmLbc2 (GmLbc2-OX); photographs were taken at 30 d after inoculation, Bars = 5 mm. (C) mean number of nodules per plant with standard deviation (SD) of L. japonicus expressing empty vector pU1301 (CK) of GmLbc2-OX at 30 days after inoculation with M. loti, **P<0.01. (D) transcript levels of GmLbc2, NIN, Enod40-1, and Enod40-2 in CK and GmLbc2-OX hairy roots detected by qRT-PCR."

[1] Giles E D, Oldroyd G E, Downie J A . Calcium, kinases and nodulation signalling in legumes. Nature, 2004,5:566-576.
doi: 10.7554/eLife.33506 pmid: 29957177
[2] Oldroyd G E, Downie J A . Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol, 2008,59:519-546.
doi: 10.1146/annurev.arplant.59.032607.092839 pmid: 18444906
[3] Oldroyd G E . Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol, 2013,11:252-263.
doi: 10.1038/nrmicro2990
[4] Radutoiu S, Madsen L H, Madsen E B, Felle H H, Umehara Y, Grønlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougarrd J . Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature, 2003,425:569-570.
doi: 10.1038/425569a pmid: 14534570
[5] Masdsen E B, Madsen L H, Radutoiu S . A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature, 2003,425:637-640.
doi: 10.1038/nature02045 pmid: 14534591
[6] Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R . LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science, 2003,302:630-633.
doi: 10.1126/science.1090074 pmid: 12947035
[7] Arrighi J F, Barre A, Ben Amor B, Bersoult A, Soriano L C, Mirabella R, de Carvalho-Niebel F, Journet E P, Ghérardi M, Huguet T, Geurts R, Dénarié J, Rougé P, Gough C . The Medicago truncatula lysin motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol, 2006,142:265-279.
doi: 10.1104/pp.106.084657 pmid: 16844829
[8] Smit P, Limpens E, Geurts R, Fedorova E, Dolgikh E, Gough C, Bisseling T . Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling. Plant Physiol, 2007,145:183-191.
doi: 10.1104/pp.107.100495 pmid: 17586690
[9] Madsen E B, Antolin-Llovera M, Grossmann C, Ye J, Vieweg S, Broghammer A, Krusell L, Radutoiu S, Jensen O N, Stougaard J, Parniske M . Autophosphorylation is essential for the in vivo function of theLotus japonicus Nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5. Plant J, 2011,65:404-417.
doi: 10.1111/j.1365-313X.2010.04431.x
[10] Broghammer A, Krusell L, Blaise M, Sauer J, Sullivan J T, Maolanon N, Vinther M, Lorentzen A, Madsen E B, Jensen K J, Roepstorff P, Thirup S, Ronson C W, Thygesen M B, Stougaard J . Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proc Natl Acad Sci USA, 2012,109:13859-13864.
doi: 10.1073/pnas.1205171109 pmid: 22859506
[11] Sørensen K K, Simonsen J B, Maolanon N N, Stougaard J, Jensen K J . Chemically synthesized 58-mer lysM domain binds lipochitin oligosaccharide. Chembiochem, 2014,15:2097-2105.
doi: 10.1002/cbic.201402125
[12] Mbengue M, Camut S, de Carvalho-Niebel F, Deslandes L, Froidure S, Klaus-Heisen D, Moreau S, Rivas S, Timmers T, Hervé C, Cullimore J, Lefebvre B . The Medicago truncatula E3 ubiquitin ligase PUB1 interacts with the LYK3 symbiotic receptor and negatively regulates infection and nodulation. Plant Cell, 2010,22:474-488.
doi: 10.1104/pp.15.01694 pmid: 26839127
[13] Tsikou D, Ramirez E E, Psarrakou I S, Wong J E, Jensen D B, Isono E, Radutoiu S, Papadopoulou K K . ALotus japonicus E3 ligase interacts with the Nod Factor Receptor 5 and positively regulates nodulation. BMC Plant Biol, 2018,18:217.
doi: 10.1186/s12870-018-1425-z pmid: 30285618
[14] Lefebvre B, Timmers T, Mbengue M, Moreau S, Hervé C, Tóth K, Bittencourt-Silvestre J, Klaus D, Deslandes L, Godiard L, Murray J D, Udvardi M K, Raffaele S, Mongrand S, Cullimore J, Gamas P, Niebel A, Ott T . A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc Natl Acad Sci USA, 2010,107:2343-2348.
doi: 10.1073/pnas.0913320107 pmid: 20133878
[15] Tóth K, Stratil T F, Madsen E B, Ye J, Popp C, Antolín-Llovera M, Grossmann C, Jensen O N, Schüssler A, Parniske M, Ott T . Functional domain analysis of the Remorin protein LjSYMREM1 inLotus japonicus. PLoS One, 2012,7:e30817.
doi: 10.1371/journal.pone.0030817 pmid: 22292047
[16] Ke D X, Fang Q, Chen C F, Zhu H, Chen T, Chang X J, Yuan S L, Kang H, Ma L, Hong Z L, Zhang Z M . The small GTPase Rop6 interacts with NFR5 and is involved in nodule formation inLotus japonicus. Plant Physiol, 2012,159:131-143.
doi: 10.1104/pp.112.197269
[17] 柯丹霞, 李祥永 . 结瘤信号途径中相关调控蛋白的研究进展. 信阳师范学院学报(自然科学版), 2015,28:621-626.
Ke D X, Li X Y . Research progress of key regulatory proteins in nodulation pathway. J Xinyang Nor Univ (Nat Sci Edn), 2015,28:621-626 (in Chinese with English abstract).
[18] Duan L J, Pei J Q, Ren Y P, Li H, Zhou X Z, Zhu H, Duanmu D Q, Wen J Q, Mysore K S, Cao Y R, Zhang Z M . A dihydroflavonol-4-reductase-like protein interacts with NFR5 and regulates rhizobial infection inLotus japonicus. Mol Plant Microbe Int, 2018,32:401-412.
doi: 10.1094/MPMI-04-18-0104-R pmid: 30295579
[19] Indrasumunar A, Searle I, Lin M H, Kereszt A, Men A, Carroll B J, Gresshoff P M . Nodulation factor receptor kinase 1α controls nodule organ number in soybean (Glycine max L. Merr). Plant J, 2011,65:39-50.
doi: 10.1111/j.1365-313X.2010.04398.x
[20] 柯丹霞, 熊文真, 彭昆鹏, 李祥永 . 抗盐基因Gm01g04890大豆子叶节遗传转化研究. 信阳师范学院学报(自然科学版), 2017,30:46-51.
Ke D X, Xiong W Z, Peng K P, Li X Y . Study on genetic transformation of salt resistant gene Gm01g04890 in soybean. J Xinyang Nor Univ (Nat Sci Edn), 2017,30:46-51 (in Chinese with English abstract).
[21] Choudhury S R, Pandey S . Specific subunits of heterotrimeric G proteins play important roles during nodulation in soybean. Plant Physiol, 2013,162:522-533.
doi: 10.1104/pp.113.215400
[22] Choudhury S R, Pandey S . Phosphorylation-dependent regulation of G-protein cycle during nodule formation in soybean. Plant Cell, 2015,27:3260-3276.
doi: 10.1105/tpc.15.00517 pmid: 26498905
[23] Yin Y, Vafeados D, Tao Y . A new class of transcription factors mediates brassino steroid-regulated gene expression inArabidopsis. Cell, 2005,120:249-259.
doi: 10.1016/j.cell.2004.11.044 pmid: 15680330
[24] Navascués J, Pérez-Rontomé C, Gay M, Marcos M, Yang F, Walker F A, Desbois A, Abián J, Becana M . Leghemoglobin green derivatives with nitrated hemes evidence production of highly reactive nitrogen species during aging of legume nodules. Proc Natl Acad Sci USA, 2012,109:2660-2665.
doi: 10.1073/pnas.1116559109 pmid: 22308405
[25] Sainz M, Calvo-Begueria L, Pérez-Rontomé C, Wienkoop S, Abián J, Staudinger C, Bartesaghi S, Radi R, Becana M . Leghemoglobin is nitrated in functional legume nodules in a tyrosine residue within the heme cavity by a nitrite/peroxide-dependent mechanism. Plant J, 2015,81:723-735.
doi: 10.1111/tpj.12762 pmid: 25603991
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[5] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[6] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[7] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[8] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[9] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[10] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[11] DONG Yan-Kun, HUANG Ding-Quan, GAO Zhen, CHEN Xu. Identification, expression profile of soybean PIN-Like (PILS) gene family and its function in symbiotic nitrogen fixation in root nodules [J]. Acta Agronomica Sinica, 2022, 48(2): 353-366.
[12] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[13] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[14] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
[15] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!