Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (01): 40-51.doi: 10.3724/SP.J.1006.2019.94066
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
Mao-Ni CHAO1,Hai-Yan HU1,*(),Run-Hao WANG1,Yu CHEN2,Li-Na FU1,Qing-Qing LIU1,Qing-Lian WANG1
[1] |
张志勇, 王清连, 李召虎, 段留生, 田晓莉 . 缺钾对棉花幼苗根系生长的影响及其生理机制. 作物学报, 2009,35:718-723.
doi: 10.3724/SP.J.1006.2009.00718 |
Zhang Z Y, Wang Q L, Li Z H, Duan L S, Tian X L . Effect of potassium deficiency on root growth of cotton (Gossypium hirsutum L.) seedlings and its physiological mechanisms involved. Acta Agron Sin, 2009,35:718-723 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2009.00718 |
|
[2] | 鲁如坤 . 我国土壤氮、磷、钾的基本状况. 土壤学报, 1989,26:280-286. |
Lu R K . General status of nutrients (N, P, K) in soils of china. Acta Pedol Sin, 1989,26:280-286 (in Chinese with English abstract). | |
[3] |
孔祥强, 罗振, 李存东, 董合忠 . 棉花早衰的分子机理研究进展. 棉花学报, 2015,27:71-79.
doi: Y2015/V27/I1/71 |
Kong X Z, Luo Z, Li C D, Dong H Z . Molecular mechanisms of premature senescence in cotton. Cotton Sci, 2015,27:71-79 (in Chinese with English abstract).
doi: Y2015/V27/I1/71 |
|
[4] | 刘冬青, 刘锐 . 转基因抗虫棉早衰与土壤肥力的相关性分析. 中国土壤与肥料, 2002, (6):41-42. |
Liu D Q, Liu R . Correlation analysis between soil fertility and premature senescence of transgenic cotton. China Soils Fert, 2002, (6):41-42 (in Chinese with English abstract). | |
[5] |
Pettigrew W T, Meredithjr W R . Dry matter production, nutrient uptake, and growth of cotton as affected by potassium fertilization. J Plant Nutr, 1997,20:531-548.
doi: 10.1080/01904169709365272 |
[6] |
李书田, 邢素丽, 张炎, 崔荣宗 . 钾肥用量和施用时期对棉花产量品质和棉田钾素平衡的影响. 植物营养与肥料学报, 2016,22:111-121.
doi: 10.11674/zwyf.14565 |
Liu S T, Xing S L, Zhang Y, Cui R Z . Application rate and time of potash for high cotton yield, quality and balance of soil potassium. Plant Nutr Fert Sci, 2016,22:111-121 (in Chinese with English abstract).
doi: 10.11674/zwyf.14565 |
|
[7] | 宋美珍, 毛树春 . 钾素对棉花光合产物的积累及产量形成的影响. 棉花学报, 1994,6(增刊):52-57. |
Song M Z, Mao S C . Effects of potassium on photosynthetic matter accumulation and yield. Acta Gossyp Sin, 1994,6(suppl):52-57 (in Chinese with English abstract). | |
[8] | 房慧勇, 张桂寅, 马峙英 . 转基因抗虫棉抗黄萎病鉴定及黄萎病发生规律. 棉花学报, 2003,15:210-214. |
Fang H Y, Zhang G Y, Ma Z Y . Disease dynamic and resistance identification to Verticillium wilt of transgenic cotton. Cotton Sci, 2003,15:210-214 (in Chinese with English abstract ). | |
[9] |
陈光, 高振宇, 徐国华 . 植物响应缺钾胁迫的机制及提高钾利用效率的策略. 植物学报, 2017,52:89-101.
doi: 10.11983/CBB16231 |
Chen G, Gao Z Y, Xu G H . Adaption of plants to potassium deficiency and strategies to improve potassium use efficiency. Bull Bot, 2017,52:89-101 (in Chinese with English abstract).
doi: 10.11983/CBB16231 |
|
[10] |
Maathuis F J M, Sanders D . Regulation of K+ absorption in plant root cells by external K+: interplay of different plasma membrane K+ transporters. J Exp Bot, 1997,48:451-458.
doi: 10.1093/jxb/48.Special_Issue.451 pmid: 21245224 |
[11] |
Maathuis F J, Sanders D . Mechanism of high-affinity potassium uptake in roots ofArabidopsis thaliana. Proc Natl Acad Sci USA, 1994,91:9272-9276.
doi: 10.1073/pnas.91.20.9272 pmid: 7937754 |
[12] |
Ahn S J, Shin R, Schachtman D P . Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol, 2004,134:1135-1145.
doi: 10.1104/pp.103.034660 pmid: 14988478 |
[13] |
Véry A A, Nieves-Cordones M, Daly M, Khan I, Fizames C, Sentenac H . Molecular biology of K+ transport across the plant cell membrane: What do we learn from comparison between plant species? J Plant Physiol, 2014,171:748-769.
doi: 10.1016/j.jplph.2014.01.011 |
[14] |
Zhao S, Zhang M L, Ma T L, Wang Y . Phosphorylation of ARF2 relieves its repression of transcription of the K+ transporter gene HAK5 in response to low potassium stress. Plant Cell, 2016,28:3005-3019.
doi: 10.1105/tpc.16.00684 pmid: 27895227 |
[15] |
Kim M J, Ruzicka D, Shin R, Schachtman D P . TheArabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions. Mol Plant, 2012,5:1042-1057.
doi: 10.1093/mp/sss003 |
[16] |
Ragel P, Ródenas R, García-Martín E, Andrés Z, Villalta I, Nieves-Cordones M, Rivero R M, Martínez V, Pardo J M, Quintero F J, Rubio F . CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis roots. Plant Physiol, 2015,169:2863-2873.
doi: 10.1104/pp.15.01401 pmid: 26474642 |
[17] |
Rushton P. J . Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell, 2002,14:749-762.
doi: 10.1105/tpc.010412 pmid: 11971132 |
[18] |
晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连 . 陆地棉钾转运体基因GhHAK5的序列特征及表达分析. 作物学报, 2018,44:236-244.
doi: 10.3724/SP.J.1006.2018.00236 |
Chao M N, Wen Q Y, Zhang Z Y, Hu G H, Zhang J B, Wang G, Wang Q L . Sequence characteristics and expression analysis of potassium transporter gene GhHAK5 in upland cotton(Gossypium hirsutum L.). Acta Agron Sin, 2018,44:236-244 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00236 |
|
[19] |
Zhang Z, Chao M, Wang S, Bu J, Tang J, Li F, Wang Q, Zhang B . Proteome quantification of cotton xylem sap suggests the mechanisms of potassium-deficiency-induced changes in plant resistance to environmental stresses. Sci Rep, 2016,6:21060.
doi: 10.1038/srep21060 pmid: 26879005 |
[20] |
Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride R C, Chen X, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen Z J . Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015,33:531-537.
doi: 10.1038/nbt.3207 pmid: 25893781 |
[21] |
Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L . Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010,28:511-515.
doi: 10.1038/nbt.1621 pmid: 20436464 |
[22] |
Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method. Methods, 2001,25:40 2-408.
doi: 10.1006/meth.2001.1262 |
[23] |
Clough S J, Bent A F . Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thalian. Plant J, 1998,16:735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079 |
[24] | 李红 . 拟南芥转运蛋白NRT1.5/NPF7.3调控K+在木质部装载的分子机制研究. 中国农业大学博士学位论文, 北京, 2016. |
Li H . Mechanism Analyses of NRT1.5/NPF7.3-Mediated K+ Realase into the Xylem in Arabidopsis. PhD Dissertation of China Agricultural University, Beijing, China, 2016 (in Chinese with English abstract). | |
[25] |
Jefferson R A, Kavanagh T A, Bevan M W . GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J, 1987,6:3901-3907.
pmid: 3327686 |
[26] |
Christ A, Maegele I, Ha N, Hong H N, Crespi M D, Maizel A . In silico identification and in vivo validation of a set of evolutionary conserved plant root-specificcis-regulatory elements. Mech Develop, 2013,130:70-81.
doi: 10.1016/j.mod.2012.03.002 |
[27] |
Costa C S, Bravo J P, Ribeiro C L, Soprano A S, Sassaki F T, Maia I G . Vascular expression driven by the promoter of a gene encoding a high-affinity potassium transporter HAK5 fromEucalyptus grandis. Plant Cell Tiss Org, 2017,131:1-10.
doi: 10.1007/s11240-017-1256-x |
[28] | 王毅, 武维 . 植物钾营养高效分子遗传机制. 植物学报, 2009,44:27-36. |
Wang Y, Wu W . Molecular genetic mechanism of high efficient potassium uptake in plants. Bull Bot, 2009,44:27-36 (in Chinese with English abstract). | |
[29] |
Gierth M, Schroeder J I . The Potassium Transporter AtHAK5 Functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol, 2005,137:1105-1114.
doi: 10.1104/pp.104.057216 pmid: 15734909 |
[30] |
Santa-María G E, Rubio F, Dubcovsky J, Rodríguez-Navarro A . TheHAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell, 1997,9:2281-2289.
doi: 10.1105/tpc.9.12.2281 pmid: 9437867 |
[31] |
Wang Y H, Garvin D F, Kochian L V . Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol, 2002,130:1361-1370.
doi: 10.1104/pp.008854 pmid: 12428001 |
[32] |
Bañuelos M A, Garciadeblas B, Cubero B, Rodríguez-Navarro A . Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol, 2002,130:784-795.
doi: 10.1104/pp.007781 pmid: 12376644 |
[33] |
张彦桃, 王欣, 祁智, 亢燕 . 拟南芥高亲和性钾转运体AtHAK5参与植物根对盐胁迫及ABA的反应. 华北农学报, 2014,29(6):214-219.
doi: 10.7668/hbnxb.2014.06.036 |
Zhang Y T, Wang X, Qi Z, Kang Y . Arabidopsis thaliana high-affinity potassium transporter AtHAK5 participated in the response to salt stress and ABA in the plant root. Acta Agric Boreali-Sin, 2014,29(6):214-219 (in Chinese with English abstract).
doi: 10.7668/hbnxb.2014.06.036 |
|
[34] |
Rubio F, Fon M, Ródenas R, Nieves-Cordones M, Alemán F, Rivero R M, Martínez V . A low K+ signal is required for functional high-affinity K+ uptake through HAK5 transporters. Physiol Plant, 2015,152:558-570.
doi: 10.1111/ppl.12205 pmid: 24716623 |
[35] |
Ashley M K, Grant M, Grabov A . Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot, 2006,57:425-436.
doi: 10.1093/jxb/erj034 pmid: 16364949 |
[36] |
Wang Y, Wu W H . Potassium transport and signaling in higher plants. Annu Rev Plant Biol, 2013,64:451-476.
doi: 10.1146/annurev-arplant-050312-120153 pmid: 23330792 |
[37] |
Chérel I, Lefoulon C, Boeglin M, Sentenac H . Molecular mechanisms involved in plant adaptation to low K+ availability. J Exp Bot, 2014,65:833-848.
doi: 10.1093/jxb/ert402 |
[38] |
Hong J, Takeshi Y, Kondou Y, Schachtman D P, Matsui M, Shin R . Identification and characterization of transcription factors regulatingArabidopsis HAK5. Plant Cell Physiol, 2013,54:1478-1490.
doi: 10.1093/pcp/pct094 |
[39] |
Kim M J, Ruzicka D, Shin R, Schachtman D P . TheArabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions. Mol Plant, 2012,5:1042-1057.
doi: 10.1093/mp/sss003 |
[40] |
Li W, Xu G, Abdel A, Yu L . Plant HAK/KUP/KT K+ transporters: function and regulation. Semin Cell Dev Biol, 2018,74:133-141.
doi: 10.1016/j.semcdb.2017.07.009 pmid: 28711523 |
[41] |
Druka A, Potokina E, Luo Z, Jiang N, Chen X, Kearsey M, Waugh R . Expression quantitative trait loci analysis in plants. Plant Biotechnol J, 2010,8:10-27.
doi: 10.1111/j.1467-7652.2009.00460.x pmid: 20055957 |
[1] | ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596. |
[2] | SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711. |
[3] | HUANG Wen-Gong, JIANG Wei-Dong, YAO Yu-Bo, SONG Xi-Xia, LIU Yan, CHEN Si, ZHAO Dong-Sheng, WU Guang-Wen, YUAN Hong-Mei, REN Chuan-Ying, SUN Zhong-Yi, WU Jian-Zhong, KANG Qing-Hua. Transcriptome profiling of flax (Linum usttatissimum L.) response to low potassium stress [J]. Acta Agronomica Sinica, 2021, 47(6): 1070-1081. |
[4] | WANG Xiao-Chun, WANG Lu-Lu, ZHANG Zhi-Yong, QIN Bu-Tan, YU Mei-Qin, WEI Yi-Hao, MA Xin-Ming. Transcription characteristics of wheat glutamine synthetase isoforms and the sequence analysis of their promoters [J]. Acta Agronomica Sinica, 2021, 47(4): 761-769. |
[5] | HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450. |
[6] | LI Lan-Lan, MU Dan, YAN Xue, YANG Lu-Ke, LIN Wen-Xiong, FANG Chang-Xun. Effect of OsPAL2;3 in regulation of rice allopathic inhibition on barnyardgrass (Echinochloa crusgalli L.) [J]. Acta Agronomica Sinica, 2021, 47(2): 197-209. |
[7] | WANG Zhen, ZHANG Xiao-Li, MENG Xiao-Jing, YAO Meng-Nan, MIU Wen-Jie, YUAN Da-Shuang, ZHU Dong-Ming, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Identification of upstream regulators for mitogen-activated protein kinase 7 gene (BnMAPK7) in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(12): 2379-2393. |
[8] | LI Na-Na, LIU Ying, ZHANG Hao-Jie, WANG Lu, HAO Xin-Yuan, ZHANG Wei-Fu, WANG Yu-Chun, XIONG Fei, YANG Ya-Jun, WANG Xin-Chao. Promoter cloning and expression analysis of the hexokinase gene CsHXK2 in tea plant (Camellia sinensis) [J]. Acta Agronomica Sinica, 2020, 46(10): 1628-1638. |
[9] | CHANG Jian-Zhong,DONG Chun-Lin,ZHANG Zheng,QIAO Lin-Yi,YANG Rui,JIANG Dan,ZHANG Yan-Qin,YANG Li-Li,WU Jia-Jie,JING Rui-Lian. Function analysis of 5′ untranslated region introns in drought-resistance gene TaSAP1 [J]. Acta Agronomica Sinica, 2019, 45(9): 1311-1318. |
[10] | Xiao-Hong ZHANG,Gen-Hai HU,Han-Tao WANG,Cong-Cong WANG,Heng-Ling WEI,Yuan-Zhi FU,Shu-Xun YU. Expression and promoter activity of GhTFL1a and GhTFL1c in Upland cotton [J]. Acta Agronomica Sinica, 2019, 45(3): 469-476. |
[11] | Mi WU,Nian WANG,Chao SHEN,Cong HUANG,Tian-Wang WEN,Zhong-Xu LIN. Development and evaluation of InDel markers in cotton based on whole-genome re-sequencing data [J]. Acta Agronomica Sinica, 2019, 45(2): 196-203. |
[12] | Cong HUANG,Xiao-Fang LI,Ding-Guo LI,Zhong-Xu LIN. QTL Mapping for Yield, Growth Period and Plant Height Traits Using MAGIC Population in Upland Cotton [J]. Acta Agronomica Sinica, 2018, 44(9): 1320-1333. |
[13] | Chao LI,Zhi-Kun LI,Qi-Shen GU,Jun YANG,Hui-Feng KE,Li-Qiang WU,Guo-Ning WANG,Yan ZHANG,Jin-Hua WU,Gui-Yin ZHANG,Yuan-Yuan YAN,Zhi-Ying MA,Xing-Fen WANG. Molecular Evaluation for Chromosome Segment Substitution Lines of Gossypium barbadense and QTL Mapping for Fiber Quality and Yield [J]. Acta Agronomica Sinica, 2018, 44(8): 1114-1126. |
[14] | Rui-Juan YANG,Jian-Rong BAI,Lei YAN,Liang SU,Xiu-Hong WANG,Rui LI,Cong-Zhuo ZHANG. Cloning and Expression Analysis of Strong Inducible Promoter P1502-ZmPHR1 Responding to Low Phosphorus Stress in Maize [J]. Acta Agronomica Sinica, 2018, 44(7): 1000-1009. |
[15] | Guo-Zhong ZHU,Fang ZHANG,Jie FU,Le-Chen LI,Er-Li NIU,Wang-Zhen GUO. Genome-wide Screening and Evaluation of SNP Core Loci for Identification of Upland Cotton Varieties [J]. Acta Agronomica Sinica, 2018, 44(11): 1631-1639. |
|