Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (01): 52-61.doi: 10.3724/SP.J.1006.2020.91024

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL mapping for total grain anthocyanin content and 1000-kernel weight in barley recombinant inbred lines population

YANG Xiao-Meng1,2,LI Xia1,2,PU Xiao-Ying1,2,DU Juan1,2,Muhammad Kazim Ali3,YANG Jia-Zhen1,2,ZENG Ya-Wen1,2,*(),YANG Tao1,2   

  1. 1 Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
    2 Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, Yunnan, China
    3 Department of Biotechnology, Fedural Urdu University of Arts, Science and Technology, Karachi 75300, Pakistan
  • Received:2019-03-18 Accepted:2019-08-09 Online:2020-01-12 Published:2019-09-18
  • Contact: Ya-Wen ZENG E-mail:zengyw1967@126.com
  • Supported by:
    This study was supported by Yunnan Applied Basic Research Projects of China(2017FD021);China Agriculture Research System(CARS-05-01A-04)

Abstract:

In this study, 193 recombinant inbred lines (RILs) derived from a cross between Ziguangmangluoerleng (purple barley, endemic to Yunnan, China) and Schooner (yellow barley introduced from Australia), grown at three sites of Yunnan province of China for three consecutive years (2013-2015), were used to determine total grain anthocyanin content, 1000-kernel weight and their correlations, and mapped QTLs. There was a significant negative correlation between total grain anthocyanin content and 1000-kernel weight. Twelve QTLs for total grain anthocyanin content were located on chromosomes 1H, 2H, 4H, 6H, and 7H which showed 5.06% to 23.86% of phenotypic variation. Eight QTLs for 1000-kernel weight were located on chromosomes 2H, 4H, and 7H, which explained phenotypic variation from 4.67% to 42.32%. Ten QTLs had phenotypic variation ≥10% and five QTLs ≥ 20%, while the highest phenotypic variation was 42.32%. In addition, two QTLs for total grain anthocyanin content were repeatedly detected at two sites for two years, and located on 2H Bmag0125 to GBM1309 and 7H EBmatc0016 to Bmag0206 interval, respectively, which accounted for 13.66% to 17.76%, and 13.07% to 16.43% of the phenotypic variation, respectively. Two QTLs for 1000-kernel weight were repeatedly detected at three sites for three years and located on 2H scssr03381 to scssr07759 and 7H GBM1297 to GBM1303 interval, which showed 4.67% to 14.55% and 34.51% to 42.32% of phenotypic variations, respectively, and their contribution rates of additive effects were consistent. The common major QTLs for two agronomic attributes were mainly distributed on chromosomes 2H and 7H. These results provide a basis for further fine mapping, cloning and marker-assisted breeding of beneficial genes related to total grain anthocyanin content and 1000-kernel weight.

Key words: barley RIL, total anthocyanin content, 1000-kernel weight, correlation, QTL mapping

Table 1

Phenotypic values of total grain anthocyanin content and 1000-kernel weight in barley "

性状
Trait
地点和年份
Site and year
亲本Parents RIL群体 RIL population
紫光芒裸二棱
ZGMLEL
Schooner 平均值
Mean
标准差
SD
变幅
Range
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
总花色苷含量
TAC (mg g-1)
玉溪 Yuxi, 2013 0.96 0.48 0.65 C 0.22 0.36-1.38 33.85 1.22 0.75
白邑 Baiyi, 2014 1.03 0.63 0.79 B 0.21 0.50-1.50 26.58 1.33 1.09
嵩明 Songming, 2015 1.14 0.70 0.84 A 0.21 0.50-1.58 25.00 1.14 0.81
千粒重
TKW (g)
玉溪 Yuxi, 2013 35.50 46.00 45.55 C 6.01 31.65-58.00 13.19 -0.34 -0.62
白邑 Baiyi, 2014 33.35 42.55 44.00 B 6.64 23.05-60.50 15.09 -0.28 -0.35
嵩明 Songming, 2015 31.00 40.05 42.36 A 7.53 25.00-57.60 17.78 -1.10 4.00

Fig. 1

Frequency distribution of total grain anthocyain content and 1000-kernel weight in barley The abscissa represents total grain anthocyain content and 1000-kernel weight in barley RIL population grown at three sites (Yuxi, Baiyi, Songming) for three consecutive years (2013-2015), respectively; ordinate represents number of lines in total grain anthocyain content and 1000-kernel weight, respectively."

Table 2

Correlation coefficient between total grain anthocyanin content and 1000-kernel weight in barley "

性状
Trait
地点和年份
Site and year
总花色苷含量 Total grain anthocyonin content 千粒重 1000-kernel weight
玉溪
Yuxi 2013
白邑
Baiyi 2014
嵩明
Songming 2015
玉溪
Yuxi 2013
白邑
Baiyi 2014
嵩明
Songming 2015
总花色苷含量
TAC
玉溪Yuxi 2013 1.00
白邑Baiyi 2014 0.918** 1.00
嵩明Songming 2015 0.873** 0.833** 1.00
千粒重
TKW
玉溪Yuxi 2013 -0.223** -0.151* -0.233** 1.00
白邑Baiyi 2014 -0.163* -0.130 -0.174* 0.832** 1.00
嵩明Songming 2015 -0.146* -0.064 -0.173* 0.775** 0.720** 1.00

Table 3

QTL analysis for total grain anthocyonin content and 1000-kernel weight of barley "

地点和年份
Site and year
性状
Trait
QTL 连锁群
Chr.
标记区间
Marker interval
LOD值
LOD value
贡献率
Contribution (%)
加性效应
Additive
玉溪 Yuxi
2013
总花色苷
TAC
qTAC-1H 1H GBM1234-Bmag0504 4.04 5.91 0.055
qTAC-2H 2H Bmag0125-GBM1309 10.42 13.66 0.080
qTAC-4H 4H HVBAMMGB84-BMAG0808 5.21 6.23 -0.054
qTAC-6H 6H GBMS0072-GBM1270 4.06 7.68 0.061
qTAC-7H 7H EBmatc0016-Bmag0206 9.82 13.07 -0.079
千粒重
TKW
qTKW-2H 2H Scssr03381-scssr07759 7.54 14.55 -2.293
qTKW-4H 4H Scssr20569-Bmag0781 3.81 4.73 1.396
qTKW-7H 7H GBM1297-GMS056 26.14 42.32 -4.390
白邑 Baiyi
2014
总花色苷
TAC
qTAC-2H 2H Bmag0125-GBM1309 11.38 17.76 0.089
qTAC-4H 4H GBM1221-GBM1501 3.58 5.06 0.049
qTAC-6H 6H BMAG0807-GBM1212 4.08 6.49 0.054
qTAC-7H 7H EBmatc0016-Bmag0206 9.24 16.43 -0.085
千粒重
TKW
qTKW-2Ha 2H Scssr03381-scssr07759 2.75 4.67 -1.434
qTKW-2Hb 2H Bmag0749-GBMS0128 4.59 7.70 -1.839
qTKW-7H 7H GMS056-GBM1303 18.73 34.51 -4.250
嵩明 Songming 2015 总花色苷
TAC
qTAC-2H 2H GBM1121-Bmag0125 12.16 20.09 0.095
qTAC-6H 6H GBM1212-Bmag0173 3.77 6.24 0.053
qTAC-7H 7H GBM1516-EBmatc0016 12.01 23.86 -0.104
千粒重
TKW
qTKW-2H 2H Scssr03381-scssr07759 2.50 5.39 -1.599
qTKW-7H 7H GMS056-GBM1303 17.37 35.37 -4.569

Fig. 2

Distribution of QTLs for total grain anthocyonin content and 1000-kernel weight of barley Triangle pattern indicates QTL for total anthocyanin content (TAC), pentagram pattern indicates QTL for 1000-kernel weight (TKW). The white patterns, gray patterns and black patterns represent the QTL loci detected in Yuxi (2013), Baiyi (2014), and Songming (2015), respectively. The physical positions corresponding to some molecular markers on 2H and 7H are indicated on the right side of the Figure."

[1] Zhu F . Anthocyanins in cereals: composition and health effects. Food Res Internat, 2018,109:232-249.
doi: 10.1016/j.foodchem.2019.125304 pmid: 31394335
[2] 华为, 朱靖环, 尚毅, 贾巧君, 汪军妹, 杨建明 . 有色大麦研究进展. 植物遗传资源学报, 2013,14:1020-1024.
Hua W, Zhu J H, Shang Y, Jia Q J, Wang J M, Yang J M . Research advances in colored barley. J Plant Genet Resour, 2013,14:1020-1024 (in Chinese with English abstract).
[3] Ma LY, Sun Z H, Zeng Y W, Luo M C, Yang J Z . Molecular mechanism and health role of functional ingredients in blueberry for chronic disease in human beings. Internat J Mol Sci, 2018,19:1-19.
doi: 10.3390/ijms19092785 pmid: 30223619
[4] Khlestkina E . The adaptive role of flavonoids: emphasis on cereals. Cereal Res Commun, 2013,41:185-198.
doi: 10.1556/CRC.2013.0004
[5] 杜连起, 李润丰 . 黑大麦营养价值及其开发利用. 粮食与油脂, 2001, (2):40-41.
Du L Q, Li R F . Nutritional value and development of black barley. Cereals Oils, 2001, (2):40-41 (in Chinese with English abstract).
[6] Martínez M, Motilva M J, de las Hazas M L, Romero M P, Vaculova K, Ludwig I A . Phytochemical composition and β-glucan content of barley genotypes from two different geographic origins for human health food production. Food Chem, 2018,245:61-70.
doi: 10.1016/j.foodchem.2017.09.026 pmid: 29287416
[7] Deng G F, Xu X R, Zhang Y, Li D, Gan R Y, Li H B . Phenolic compounds and bioactivities of pigmented rice. Critic Rev Food Sci Nutr, 2013,53:296-306.
doi: 10.1080/10408398.2010.529624 pmid: 23216001
[8] Cimino F, Ambra R, Canali R, Saija A, Virgili F . Effect of cyanidin-3-O-glucoside on UVB-Induced response in human keratinocytes. J Agric Food Chem, 2006,54:4041-4047.
doi: 10.1021/jf060253x pmid: 16719532
[9] 李静烨, 王楠, 陈升位, 吴亚琼, 王茹媛, 沈真辉, 莫凡 . 不同大麦品种(或品系) 3个穗部性状的差异分析和QTLs检测. 分子植物育种, 2018,16:3973-3979.
Li J Y, Wang N, Chen S W, Wu Y Q, Wang R Y, Shen Z H, Mo F . Difference analysis and QTLs detection on three spike traits of different barley varieties (or strains). Mol Plant Breed, 2018,16:3973-3979 (in Chinese with English abstract).
[10] Kim M J, Hyun J N, Kim J A, Park J C, Kim M Y, Kim J G, Lee S J, Chun S C, Chung I M . Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J Agric Food Chem, 2007,55:4802-4809.
doi: 10.1021/jf0701943 pmid: 17516656
[11] Mayler J I, Stanford E H . Color inheritance in barley. J Am Soc Agric, 1942,34:427-436.
doi: 10.1186/s12870-015-0524-3 pmid: 25998066
[12] Woodward R W, Thieret J W . A genetic study of complementary genes for purple lemma, palea and pericarp in barley (Hordeum vulgare L.). Agron J, 1953,45:182-185.
doi: 10.2134/agronj1953.00021962004500050002x
[13] Choo T M, Vigier B, Ho K M, Ceccarelli S, Grando S, Franckowiak J D . Comparison of black, purple and yellow barleys. Genet Resour Crop Evol, 2005,52:121-126.
doi: 10.1007/s10722-003-3086-4
[14] Finch R A, Simpson E . New colours and complementary colour genes in barley. Zeitschrift Fuer Pflanzenzuechtung, 1978,81:40-53.
[15] Strygina K V, Börner A, Khlestkina E K . Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone. BMC Plant Biol, 2017,17:109-117.
doi: 10.1186/s12870-017-1052-0 pmid: 28645264
[16] Lundqvist U, Franckowiak J D, Konishi T . New and revised descriptions of barley genes. Barley Genet Newslett, 1997,26:22-516.
[17] Jia Q J, Zhu J H, Wang J M, Yang J M, Zhang G P . Genetic mapping and molecular marker development for the genePre2 controlling purple grains in barley. Euphytica, 2016,208:215-223.
doi: 10.1007/s10681-015-1593-y
[18] Shoeva O Y, Mock H P, Kukoeva T V, Börner A, Khlestkina E K . Regulation of the flavonoid biosynthesis pathway genes in purple and black grains of hordeum vulgare. PLoS One, 2016,11:1-16.
doi: 10.1371/journal.pone.0163782 pmid: 27706214
[19] 杜欢, 张颖, 薛梦瑶, 靖姣姣, 白志英, 李存东 . 大麦株高近等基因系的籽粒性状差异及相关分析. 华北农学报, 2015,30(5):97-103.
doi: 10.7668/hbnxb.2015.05.016
Du H, Zhang Y, Xue M Y, Jing J J, Bai Z Y, Li C D . Difference and correlation analysis of grain traits in the near-isogenic line of plant height of barley. Acta Agric Boreali-Sin, 2015,30(5):97-103 (in Chinese with English abstract).
doi: 10.7668/hbnxb.2015.05.016
[20] 张小燕, 张跃进, 潘高峰 . 日本不同棱型大麦种质资源农艺性状的差异. 麦类作物学报, 2006,26(6):39-41.
Zhang X Y, Zhang Y J, Pan G F . Study on germplasm resource among different rowed barley. J Triticeae Crops, 2006,26(6):39-41 (in Chinese with English abstract).
[21] 李喜焕, 常文锁, 张彩英, 李保元, 马峙英 . 引进春播啤酒大麦品种生育时期及产量性状鉴定与筛选. 河北农业大学学报, 2007,30(3):22-25.
Li X H, Chang W S, Zhang C Y, Li B Y, Ma Z Y . The evaluation on growing stages and yield traits of seven introduced malting beer barley varieties. J Agric Univ Hebei, 2007,30(3):22-25 (in Chinese with English abstract).
[22] 吕毅 . 青藏高原一年生野生大麦若干农艺性状的QTL定位. 华中农业大学硕士学位论文, 湖北武汉, 2007. pp 18-25.
Lyu Y . QTL Analysis of Some Agronomic Traits in Qing-Tibetan Plateau Annual Wild Barley. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2007. pp 18-25 (in Chinese with English abstract).
[23] 王建林, 冯西博, 付刚, 侯维海, 王改花, 大次卓嘎, 钟志明 . 青藏高原栽培大麦千粒重空间分布格局及其与环境因子的关系. 生态学报, 2018,38:1114-1123.
doi: 10.5846/stxb201612022483
Wang J L, Feng X B, Fu G, Hou W H, Wang G H , Dacizhuoga, Zhong Z M. Relationship between spatial distribution pattern and factors affecting weight per 1000-seeds of cultivated barley in Qinghai-Tibet Plateau. Acta Ecol Sin, 2018,38:1114-1123 (in Chinese with English abstract).
doi: 10.5846/stxb201612022483
[24] Chen G D, Li H B, Zheng Z, Wei Y M, Zheng Y L, Mclntyre C L, Zhou M X, Liu C J . Characterization of a QTL affecting spike morphology on the long arm of chromosome 3H in barley (Hordeum vulgare L.) based on near isogenic lines and a NIL-derived population. Theor Appl Genet, 2012,125:1385-1392.
doi: 10.1007/s00122-012-1918-3
[25] Hori K, Kobayashi T, Shimizu A, Sato K, Takeda K, Kawasaki S . Efficient construction of high-density linkage map and its application to QTL analysis in barley. Theor Appl Genet, 2003,107:806-813.
doi: 10.1007/s00122-003-1342-9
[26] Baghizadeh A, Taleei A, Naghavi M . QTL analysis for some agronomic traits in barley (Hordeum vulgare L.). Internat J Agric Biol, 2007,9:372-374.
doi: 10.1186/s12863-018-0665-0 pmid: 30092756
[27] Wang J, Sun G, Ren X, Li C, Liu L, Wang Q, Du B, Sun D . QTL underlying some agronomic traits in barley detected by SNP markers. BMC Genet, 2016,17:1-13.
doi: 10.1186/s12863-015-0315-8 pmid: 26866367
[28] Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M . Cytokinin oxidase regulates rice grain production. Science, 2005,309:741-745.
doi: 10.1126/science.1113373 pmid: 15976269
[29] 覃鸿妮, 晏萌, 王召辉, 郭莹, 王辉, 孙海燕, 刘志斋, 蔡一林 . 玉米籽粒中花色苷和黑色素含量的QTL分析. 作物学报, 2012,38:275-284.
doi: 10.3724/SP.J.1006.2012.00275
Qin H N, Yan M, Wang Z H, Guo Y, Wang H, Sun H Y, Liu Z Z, Cai Y L . QTL mapping for anthocyanin and melanin contents in maize kernel. Acta Agron Sin, 2012,38:275-284 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.00275
[30] Hosseinian F S, Li W, Beta T . Measurement of anthocyanins and other phytochemicals in purple wheat. Food Chem, 2008,109:916-924.
doi: 10.1016/j.foodchem.2007.12.083 pmid: 26050008
[31] Zeng Y W, Du J, Yang X M, Pu X Y, Wang L X, Yang J Z, Du L J, Yang T, Yang S M, Sun Z H . Identification of quantitative trait loci for mineral elements in grains and grass powder of barley. Genet Mol Res, 2016,15(4):1-13.
doi: 10.4238/gmr15049103 pmid: 27966755
[32] Li H H, Ribaut J M, Li Z L, Wang J K . Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008,116:243-260.
doi: 10.1007/s00122-007-0663-5
[33] 王建康 . 数量性状基因的完备区间作图方法. 作物学报, 2009,35:239-245.
doi: 10.3724/SP.J.1006.2009.00239
Wang J K . Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin, 2009,35:239-245 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2009.00239
[34] 孙明茂, 韩龙植 . 粳稻龙锦1号/香软米1578杂交组合F5家系群糙米总花色苷含量变异及相关性分析. 植物遗传资源学报, 2017,18:186-192.
Sun M M, Han L Z . Variation and correlation analyses of total anthocyanin content of brown rice (Oryza sativa) in F5 lines from japonica rice cross Longjin 1/Xiangruanmi 1578. J Plant Genet Resour, 2017,18:186-192 (in Chinese with English abstract).
[35] 黄莹莹 . 水稻子粒花色苷、矿质元素含量及相关性状的QTL定位. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2013. pp 1-41.
Huang Y Y . QTL Identification Underlying Anthocyanin and Mineral Elements Content Related Traits in Rice. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2013. pp 1-41 (in Chinese with English abstract).
[36] 王楠, 王家曦, 谢文英, 陈升位, 杨映宝, 王乐 . 25个地方大麦品种籽粒中花色苷成分及其含量差异. 云南农业大学学报, 2015,30:829-835.
Wang N, Wang J X, Xie W Y, Chen S W, Yang Y B, Wang L . Difference of the anthocyanin components and their contents of 25 local barley variety grains. J Yunnan Agric Univ, 2015,30:829-835 (in Chinese with English abstract).
[37] 胡家坤, 谢文英, 陈升位, 王楠, 杨映宝, 王乐 . 25个大麦地方品种籽粒总黄酮和花色苷的含量差异. 云南农业大学学报, 2015,30:522-527.
Hu J K, Xie W Y, Chen S W, Wang N, Yang Y B, Wang L . The content difference of total flavonoids and anthocynin from the grains of 25 local barley varieties. J Yunnan Agric Univ, 2015,30:522-527 (in Chinese with English abstract).
[38] Zheng G Z . Effects of Blackish Purple Colored Seed Coat on Grain Quality and Yield Associated Characters in Rice (Oryza sativa L.). MS Thesis of Seoul University, Seoul, Republic of Korea, 2000. pp 1-41.
[39] 常汇琳 . 水稻花色苷和原花色素含量的QTL分析及与产量性状关系的研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2015. pp 1-55.
Chang H L . QTL Analysis of Anthocyanin and Proanthocyanidin Content and Research on Relationship between Yield Traits in Rice. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2015. pp 1-55 (in Chinese with English abstract).
[40] 杜欢, 马彤彤, 侯晓梦, 张颖, 白志英, 李存东 . 20对大麦株高近等基因系农艺与产量性状差异及相关性分析. 华北农学报, 2016,31(5):114-121.
doi: 10.7668/hbnxb.2016.05.017
Du H, Ma T T, Hou X M, Zhang Y, Bai Z Y, Li C D . Difference and correlation analysis of agronomic and yield characters in twenty pairs near-isogenic line of plant height of barley. Acta Agric Boreali-Sin, 2016,31(5):114-121 (in Chinese with English abstract).
doi: 10.7668/hbnxb.2016.05.017
[41] 张宇, 司二静, 孟亚雄, 马小乐, 李葆春, 王化俊 . 不同来源大麦材料的农艺性状和籽粒蛋白质含量及群体遗传结构分析. 麦类作物学报, 2015,35:940-947.
Zhang Y, Si E J, Meng Y X, Ma X L, Li B C, Wang H J . Analysis on agronomic traits, grain protein content and population structure of barley germplasm from different geographical origins. J Triticeae Crops, 2015,35:940-947 (in Chinese with English abstract).
[42] Bauer A M, Hoti F, Korff M V, Pillen K, Léon J, Sillanpä M J . Advanced backcross: QTL analysis in spring barley (H. vulgare ssp. spontaneum) comparing a REML versus a Bayesian model in multi-environmental field trials. Theor Appl Genet, 2009,119:105-123.
doi: 10.1007/s00122-009-1021-6
[43] 赖勇, 贾建磊, 王晋民, 任龙, 吕仲昱, 朱惠琴, 马辉, 杨莉娜, 李宗仁 . 外引大麦SSR标记遗传多样性及其与农艺性状的关联分析. 麦类作物学报, 2017,37:197-204.
Lai Y, Jia J L, Wang J M, Ren L, Lyu Z Y, Zhu H Q, Ma H, Yang L N, Li Z R . Analysis of genetic diversity and association with agronomic traits in barley (Hordeum vulgare L.) introduced from abroad using SSR markers. J Triticeae Crops, 2017,37:197-204 (in Chinese with English abstract).
[44] Marquez-Cedillo L A, Hayes P M, Kleinhofs A, Legge W G, Jones B L, Rossnagel B G, Sato K, Ullrich S E, Wesenberg D M . QTL analysis of agronomic traits in barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet, 2001,103:625-637.
doi: 10.1007/PL00002919
[45] Zhang X W, Jiang Q T, Wei Y M, Liu C . Inheritance analysis and mapping of quantitative trait loci (QTL) controlling individual anthocyanin compounds in purple barley (Hordeum vulgare L.) grains. PLoS One, 2017,12(8):e0183704.
doi: 10.1371/journal.pone.0183704 pmid: 28832657
[46] Himi E, Taketa S . Isolation of candidate genes for the barleyAnt1 and wheat Rc genes controlling anthocyanin pigmentation in different vegetative tissues. Mol Genet Genom, 2015,290:1287-1298.
doi: 10.1007/s00438-015-0991-0 pmid: 25585663
[47] 关伟伟 . 大麦主要农艺性状的QTL定位及过氧化物酶、酯酶和细胞色素氧化酶的遗传分析. 华中农业大学硕士学位论文, 湖北武汉, 2011. pp 25-31.
Guan W W . QTL Analysis of Main Agronomic Traits and Inheritance of Isozymes Peroxidase, Esterase and Cytochrome Oxidase in Barley. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2011. pp 25-31 (in Chinese with English abstract).
[48] Pillen K, Zacharias A, Léon J . Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet, 2003,107:340-352.
doi: 10.1007/s00122-003-1253-9 pmid: 12677407
[49] Beheshtizadeh H, Fakheri B A, Aghnoum R, Mahdinezhad N, Pourdad S S, Masoudi B . QTL mapping of grain yield and its components under normal and drought stress conditions in barley (Hordeum vulgare L.). Ind J Genet, 2018,78:69-80.
[50] 司二静, 张宇, 汪军成, 孟亚雄, 李葆春, 马小乐, 尚勋武, 王化俊 . 大麦农艺性状与SSR标记的关联分析. 作物学报, 2015,41:1064-1072.
doi: 10.3724/SP.J.1006.2015.01064
Si E J, Zhang Y, Wang J C, Meng Y X, Li B C, Ma X L, Shang X W, Wang H J . Association analysis between SSR marker and agronomic traits in barley. Acta Agron Sin, 2015,41:1064-1072 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.01064
[1] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[2] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[3] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[4] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[5] HASAN Umut,SAWUT Mamat,Shui-Sen CHEN,Dan LI. Inversion of leaf area index of winter wheat based on GF-1/2 image [J]. Acta Agronomica Sinica, 2020, 46(5): 787-797.
[6] Dai-Ling LIU,Jun-Feng XIE,Qian-Rui HE,Si-Wei CHEN,Yue HU,Jia ZHOU,Yue-Hui SHE,Wei-Guo LIU,Wen-Yu YANG,Xiao-Ling WU. QTL analysis for relative contents of glycinin and β-conglycinin fractions from storage protein in soybean seeds under monoculture and relay intercropping [J]. Acta Agronomica Sinica, 2020, 46(3): 341-353.
[7] Li-Lan ZHANG, Lie-Mei ZHANG, Huan-Ying NIU, Yi XU, Yu LI, Jian-Min QI, Ai-Fen TAO, Ping-Ping FANG, Li-Wu ZHANG. Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1905-1913.
[8] WU Hai-Tao, ZHANG Yong, SU Bo-Hong, Lamlom F Sobhi, QIU Li-Juan. Development of molecular markers and fine mapping of qBN-18 locus related to branch number in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1667-1677.
[9] CAO Xin-Chuan,HU Shou-Lin,HAN Xiu-Feng,HE Liang-Rong,GUO Wei-Feng. Relationship of stage development of cotton bolls with yield and quality in island cotton [J]. Acta Agronomica Sinica, 2020, 46(02): 300-306.
[10] WANG Cun-Hu,LIU Dong,XU Rui-Neng,YANG Yong-Qing,LIAO Hong. Mapping of QTLs for leafstalk angle in soybean [J]. Acta Agronomica Sinica, 2020, 46(01): 9-19.
[11] WANG Da-Chuan,WANG Hui,MA Fu-Ying,DU Jie,ZHANG Jia-Yu,XU Guang-Yi,HE Guang-Hua,LI Yun-Feng,LING Ying-Hua,ZHAO Fang-Ming. Identification of rice chromosome segment substitution Line Z747 with increased grain number and QTL mapping for related traits [J]. Acta Agronomica Sinica, 2020, 46(01): 140-146.
[12] Li-Juan WEI,Rui-Ying LIU,Li ZHANG,Zhi-You CHEN,Hong YANG,Qiang HUO,Jia-Na LI. Detection of stem height QTL and integration of the loci for plant height- related traits in B. napus [J]. Acta Agronomica Sinica, 2019, 45(6): 818-828.
[13] YAN Chao,ZHENG Jian,DUAN Wen-Jing,NAN Wen-Bin,QIN Xiao-Jian,ZHANG Han-Ma,LIANG Yong-Shu. Locating QTL controlling yield traits in overwintering cultivated rice [J]. Acta Agronomica Sinica, 2019, 45(4): 522-537.
[14] ZHANG Chun-Xiao,LI Shu-Fang,JIN Feng-Xue,LIU Wen-Ping,LI Wan-Jun,LIU Jie,LI Xiao-Hui. QTL mapping of salt and alkaline tolerance-related traits at the germination and seedling stage in maize (Zea mays L.) using three analytical methods [J]. Acta Agronomica Sinica, 2019, 45(4): 508-521.
[15] LIU Jiang-Ning,WANG Chu-Xin,ZHANG Hong-GEN,MIAO Yi-Xu,GAO Hai-Lin,XU Zuo-Peng,LIU Qiao-Quan,TANG Shu-Zhu. Mapping of QTLs for resistance to rice black-streaked dwarf disease [J]. Acta Agronomica Sinica, 2019, 45(11): 1664-1671.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!