Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (01): 40-51.doi: 10.3724/SP.J.1006.2019.94066

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and functional analysis of promoter of potassium transporter gene GhHAK5 in upland cotton (Gossypium hirsutum L.)

Mao-Ni CHAO1,Hai-Yan HU1,*(),Run-Hao WANG1,Yu CHEN2,Li-Na FU1,Qing-Qing LIU1,Qing-Lian WANG1   

  1. 1 Henan Institute of Science and Technology/Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang 453003, Henan, China
    2 Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
  • Received:2019-04-25 Accepted:2019-08-09 Online:2020-01-12 Published:2020-03-04
  • Contact: Hai-Yan HU E-mail:haiyanhuhhy@126.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31601347);Henan Postdoctoral Science Foundation(1902042);Henan Scientific and Technological Research Program(192102110030);Key Research Projects of Henan Higher Education Institutions(19A210013)

Abstract:

Transcriptional regulation of KUP/HAK/KT potassium transporter gene is an important mechanism of plant response to low potassium stress. Cloning and analysis of promoter of potassium transporter gene in cotton is not only helpful to understand its expression pattern and regulation mechanism, but also important to improve the potassium absorption in cotton. Potassium transporter gene GhHAK5 is a highly expressed in roots and induced by low potassium stress in upland cotton, but the function of its promoter is still unclear. In this study, the 2000 bp promoter fragment of GhHAK5 was cloned from upland cotton variety Baimian 1 by using PCR amplification, and its function was analyzed by GUS histochemical staining and induced expression analysis of GUS under low potassium in pGhHAK5 transgenic Arabidopsis thaliana. In addition to TATA-box, CAAT-box and other basic cis-acting elements, pGhHAK5 also contained a number of cis-acting elements responsive to light, stress, phytohormone and circadian. pGhHAK5 was highly consistent with pGrHAK5 in the number and location of important regulatory elements, and had five root-specific expression regulatory elements (ATAAAAT) and an ARF transcription factor binding site (TGTCNN) involved in transcription regulation under low potassium conditions. GUS histochemical staining of transgenic Arabidopsis thaliana seedlings showed that the leaf veins and vascular tissue of hypocotyl were deeply stained, and the roots were shallowly stained. For mature Arabidopsis thaliana plants, enhanced GUS staining was observed in roots, leaf veins and the vascular tissue of calyx, and weakened GUS staining was observed in stem and pod skin, suggesting that pGhHAK5-driven GUS was mainly expressed in mature roots and vascular tissue of shoots. Induced expression analysis of GUS under low potassium in pGhHAK5 transgenic Arabidopsis thaliana showed that the expression of GUS driven by pGhHAK5 was weak in young roots of Arabidopsis thaliana seedlings, and its expression was not enhanced by low potassium stress. These results suggest that pGhHAK5 might be a potassium-deficient inducible promoter mainly in mature roots. Transcriptome and quantitative real-time PCR analysis showed that GhHAK5 expression in roots was affected by developmental stages, which was consistent with the results of GUS expression driven by pGhHAK5 in Arabidopsis thaliana. These results are helpful to understand the molecular mechanism of GhHAK5 expression regulation, and provide theoretical basis for improving potassium uptake efficiency and breeding potassium efficient varieties in cotton.

Key words: promoter, vascular tissues, potassium transporter, low potassium, upland cotton

Fig. 1

Amplification of GhHAK5 promoter sequence in upland cotton (Gossypium hirsutum L.) 1: PCR products of GhHAK5 promoter; 2: DNA marker (DL2000)."

Table 1

cis-acting elements in promoter of GhHAK5"

元件类型
Element type
名称
Name
拷贝数
Copy number
基序
Motif sequence
功能
Function
基础元件
Basal
element
5UTR Py-rich stretch 1 TTTCTTCTCT 高转录水平顺式作用元件
cis-acting element conferring high transcription levels
TATA-box 61 TATA/ATATAT/TTTTA 转录起始位点-30核心启动子元件 Core promoter element around -30 of transcription start
CAAT-box 18 CAATT/CAAT/CCAAT 启动子和增强子区的一般顺式作用元件 Common cis-acting element in promoter and enhancer regions

Light
Box I 1 TTTCAAA 光响应元件 Light responsive element
I-box 1 ATGATATGA 部分光响应元件 Part of a light responsive element
G-Box 1 CACGTT 光响应顺式作用调控元件 cis-acting regulatory element involved in light responsiveness
AT1-motif 1 ATTAATTTTACA 部分光响应模块 Part of a light responsive module
Box II 1 GTGGATATTATAT 部分光响应元件 Part of a light responsive element
生物钟
Circadian
Circadian 1 CAANNNNATC 昼夜节律顺式作用调控元件 cis-acting regulatory element involved in circadian control
植物激素
Phytohormone
CGTCA-motif 1 CGTCA 茉莉酸响应顺式作用元件 cis-acting regulatory element involved in the MeJA-responsiveness
TCA-element 1 GAGAAGAATA 水杨酸响应顺式作用元件 cis-acting element
involved in salicylic acid responsiveness
TGA-element 1 AACGAC 生长素响应元件 Auxin-responsive element
ERE 1 ATTTCAAA 乙烯响应元件 Ethylene-responsive element
逆境胁迫
Stress
Box-W1 1 TTGACC 真菌诱导子响应元件
Fungal elicitor responsive element
HSE 4 AAAAAATTTC 热胁迫响应顺式作用元件 cis-acting element
involved in heat stress responsiveness
其他
Other
Skn-1_motif 4 GTCAT 胚乳表达相关顺式调控元件 cis-acting regulatory element required for endosperm expression
AT-rich element 1 ATAGAAATCAA AT-rich DNA结合蛋白的结合位点(ATBP-1)
Binding site of AT-rich DNA binding protein
Root-specific motif 5 ATAAAAT 根特异性表达响应元件
Root-specific responsive element

Fig. 2

Sequence analysis of GhHAK5 promoter The nucleotide at position +1 is the ATG start codon, the ATG is indicated in red. Parts of the putative cis-regulatory elements are noted under the sequences in shadow. The one ARF binding site (TGTCNN) is underlined in red, and the five root-specific motifs are bold in red."

Fig. 3

Comparative analysis of the promoter sequence of GhHAK5 and its homologous gene The promoter of potassium transporter gene HAK5 of four species in Gossypium are indicated in bold."

Fig. 4

PCR analysis of T1 generation transgenic Arabidopsis plants M: marker; 1: wild Arabidopsis thaliana (negative control); 2: expression vector pCAMBIA1381Z-pGhHAK5 plasmid (positive control); 3-8: transgenic Arabidopsis thaliana."

Fig. 5

GUS histochemical staining in pGhHAK5 transgenic Arabidopsis thaliana A: wild-type Arabidopsis thaliana seedlings; B: pGhHAK5 transgenic Arabidopsis thaliana; 1-4: Arabidopsis seedlings (1) and enlarged view of its leaf (2), hypocotyl (3) and roots (4); 5-12: the leaf (5), stem (6), flower (7), enlarged view of flower (8), pod (9), enlarged view of pod (10), roots (11), and enlarged view of roots (12) in mature period Arabidopsis thaliana."

Fig. 6

Low potassium stress response analysis in pGhHAK5 transgenic Arabidopsis thaliana WT: wild type Arabidopsis thaliana seedlings; HK: high potassium; LK: low potassium. a: Arabidopsis thaliana seedlings; b: enlarged view of leaf; c: enlarged view of roots."

Fig. 7

Spatio-temporal expression analysis of GhHAK5 in upland cotton (Gossypium hirsutum L.) A: transcriptome analysis of spatio-temporal expression of GhHAK5 in upland cotton; B: quantitative real-time PCR analysis of spatio-temporal expression of GhHAK5 in upland cotton; C: the comparison of roots morphological change at different development stages in cotton; ** Significant at the 0.01 probability level."

[1] 张志勇, 王清连, 李召虎, 段留生, 田晓莉 . 缺钾对棉花幼苗根系生长的影响及其生理机制. 作物学报, 2009,35:718-723.
doi: 10.3724/SP.J.1006.2009.00718
Zhang Z Y, Wang Q L, Li Z H, Duan L S, Tian X L . Effect of potassium deficiency on root growth of cotton (Gossypium hirsutum L.) seedlings and its physiological mechanisms involved. Acta Agron Sin, 2009,35:718-723 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2009.00718
[2] 鲁如坤 . 我国土壤氮、磷、钾的基本状况. 土壤学报, 1989,26:280-286.
Lu R K . General status of nutrients (N, P, K) in soils of china. Acta Pedol Sin, 1989,26:280-286 (in Chinese with English abstract).
[3] 孔祥强, 罗振, 李存东, 董合忠 . 棉花早衰的分子机理研究进展. 棉花学报, 2015,27:71-79.
doi: Y2015/V27/I1/71
Kong X Z, Luo Z, Li C D, Dong H Z . Molecular mechanisms of premature senescence in cotton. Cotton Sci, 2015,27:71-79 (in Chinese with English abstract).
doi: Y2015/V27/I1/71
[4] 刘冬青, 刘锐 . 转基因抗虫棉早衰与土壤肥力的相关性分析. 中国土壤与肥料, 2002, (6):41-42.
Liu D Q, Liu R . Correlation analysis between soil fertility and premature senescence of transgenic cotton. China Soils Fert, 2002, (6):41-42 (in Chinese with English abstract).
[5] Pettigrew W T, Meredithjr W R . Dry matter production, nutrient uptake, and growth of cotton as affected by potassium fertilization. J Plant Nutr, 1997,20:531-548.
doi: 10.1080/01904169709365272
[6] 李书田, 邢素丽, 张炎, 崔荣宗 . 钾肥用量和施用时期对棉花产量品质和棉田钾素平衡的影响. 植物营养与肥料学报, 2016,22:111-121.
doi: 10.11674/zwyf.14565
Liu S T, Xing S L, Zhang Y, Cui R Z . Application rate and time of potash for high cotton yield, quality and balance of soil potassium. Plant Nutr Fert Sci, 2016,22:111-121 (in Chinese with English abstract).
doi: 10.11674/zwyf.14565
[7] 宋美珍, 毛树春 . 钾素对棉花光合产物的积累及产量形成的影响. 棉花学报, 1994,6(增刊):52-57.
Song M Z, Mao S C . Effects of potassium on photosynthetic matter accumulation and yield. Acta Gossyp Sin, 1994,6(suppl):52-57 (in Chinese with English abstract).
[8] 房慧勇, 张桂寅, 马峙英 . 转基因抗虫棉抗黄萎病鉴定及黄萎病发生规律. 棉花学报, 2003,15:210-214.
Fang H Y, Zhang G Y, Ma Z Y . Disease dynamic and resistance identification to Verticillium wilt of transgenic cotton. Cotton Sci, 2003,15:210-214 (in Chinese with English abstract ).
[9] 陈光, 高振宇, 徐国华 . 植物响应缺钾胁迫的机制及提高钾利用效率的策略. 植物学报, 2017,52:89-101.
doi: 10.11983/CBB16231
Chen G, Gao Z Y, Xu G H . Adaption of plants to potassium deficiency and strategies to improve potassium use efficiency. Bull Bot, 2017,52:89-101 (in Chinese with English abstract).
doi: 10.11983/CBB16231
[10] Maathuis F J M, Sanders D . Regulation of K+ absorption in plant root cells by external K+: interplay of different plasma membrane K+ transporters. J Exp Bot, 1997,48:451-458.
doi: 10.1093/jxb/48.Special_Issue.451 pmid: 21245224
[11] Maathuis F J, Sanders D . Mechanism of high-affinity potassium uptake in roots ofArabidopsis thaliana. Proc Natl Acad Sci USA, 1994,91:9272-9276.
doi: 10.1073/pnas.91.20.9272 pmid: 7937754
[12] Ahn S J, Shin R, Schachtman D P . Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol, 2004,134:1135-1145.
doi: 10.1104/pp.103.034660 pmid: 14988478
[13] Véry A A, Nieves-Cordones M, Daly M, Khan I, Fizames C, Sentenac H . Molecular biology of K+ transport across the plant cell membrane: What do we learn from comparison between plant species? J Plant Physiol, 2014,171:748-769.
doi: 10.1016/j.jplph.2014.01.011
[14] Zhao S, Zhang M L, Ma T L, Wang Y . Phosphorylation of ARF2 relieves its repression of transcription of the K+ transporter gene HAK5 in response to low potassium stress. Plant Cell, 2016,28:3005-3019.
doi: 10.1105/tpc.16.00684 pmid: 27895227
[15] Kim M J, Ruzicka D, Shin R, Schachtman D P . TheArabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions. Mol Plant, 2012,5:1042-1057.
doi: 10.1093/mp/sss003
[16] Ragel P, Ródenas R, García-Martín E, Andrés Z, Villalta I, Nieves-Cordones M, Rivero R M, Martínez V, Pardo J M, Quintero F J, Rubio F . CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis roots. Plant Physiol, 2015,169:2863-2873.
doi: 10.1104/pp.15.01401 pmid: 26474642
[17] Rushton P. J . Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell, 2002,14:749-762.
doi: 10.1105/tpc.010412 pmid: 11971132
[18] 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连 . 陆地棉钾转运体基因GhHAK5的序列特征及表达分析. 作物学报, 2018,44:236-244.
doi: 10.3724/SP.J.1006.2018.00236
Chao M N, Wen Q Y, Zhang Z Y, Hu G H, Zhang J B, Wang G, Wang Q L . Sequence characteristics and expression analysis of potassium transporter gene GhHAK5 in upland cotton(Gossypium hirsutum L.). Acta Agron Sin, 2018,44:236-244 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00236
[19] Zhang Z, Chao M, Wang S, Bu J, Tang J, Li F, Wang Q, Zhang B . Proteome quantification of cotton xylem sap suggests the mechanisms of potassium-deficiency-induced changes in plant resistance to environmental stresses. Sci Rep, 2016,6:21060.
doi: 10.1038/srep21060 pmid: 26879005
[20] Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride R C, Chen X, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen Z J . Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015,33:531-537.
doi: 10.1038/nbt.3207 pmid: 25893781
[21] Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L . Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010,28:511-515.
doi: 10.1038/nbt.1621 pmid: 20436464
[22] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method. Methods, 2001,25:40 2-408.
doi: 10.1006/meth.2001.1262
[23] Clough S J, Bent A F . Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thalian. Plant J, 1998,16:735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079
[24] 李红 . 拟南芥转运蛋白NRT1.5/NPF7.3调控K+在木质部装载的分子机制研究. 中国农业大学博士学位论文, 北京, 2016.
Li H . Mechanism Analyses of NRT1.5/NPF7.3-Mediated K+ Realase into the Xylem in Arabidopsis. PhD Dissertation of China Agricultural University, Beijing, China, 2016 (in Chinese with English abstract).
[25] Jefferson R A, Kavanagh T A, Bevan M W . GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J, 1987,6:3901-3907.
pmid: 3327686
[26] Christ A, Maegele I, Ha N, Hong H N, Crespi M D, Maizel A . In silico identification and in vivo validation of a set of evolutionary conserved plant root-specificcis-regulatory elements. Mech Develop, 2013,130:70-81.
doi: 10.1016/j.mod.2012.03.002
[27] Costa C S, Bravo J P, Ribeiro C L, Soprano A S, Sassaki F T, Maia I G . Vascular expression driven by the promoter of a gene encoding a high-affinity potassium transporter HAK5 fromEucalyptus grandis. Plant Cell Tiss Org, 2017,131:1-10.
doi: 10.1007/s11240-017-1256-x
[28] 王毅, 武维 . 植物钾营养高效分子遗传机制. 植物学报, 2009,44:27-36.
Wang Y, Wu W . Molecular genetic mechanism of high efficient potassium uptake in plants. Bull Bot, 2009,44:27-36 (in Chinese with English abstract).
[29] Gierth M, Schroeder J I . The Potassium Transporter AtHAK5 Functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol, 2005,137:1105-1114.
doi: 10.1104/pp.104.057216 pmid: 15734909
[30] Santa-María G E, Rubio F, Dubcovsky J, Rodríguez-Navarro A . TheHAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell, 1997,9:2281-2289.
doi: 10.1105/tpc.9.12.2281 pmid: 9437867
[31] Wang Y H, Garvin D F, Kochian L V . Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol, 2002,130:1361-1370.
doi: 10.1104/pp.008854 pmid: 12428001
[32] Bañuelos M A, Garciadeblas B, Cubero B, Rodríguez-Navarro A . Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol, 2002,130:784-795.
doi: 10.1104/pp.007781 pmid: 12376644
[33] 张彦桃, 王欣, 祁智, 亢燕 . 拟南芥高亲和性钾转运体AtHAK5参与植物根对盐胁迫及ABA的反应. 华北农学报, 2014,29(6):214-219.
doi: 10.7668/hbnxb.2014.06.036
Zhang Y T, Wang X, Qi Z, Kang Y . Arabidopsis thaliana high-affinity potassium transporter AtHAK5 participated in the response to salt stress and ABA in the plant root. Acta Agric Boreali-Sin, 2014,29(6):214-219 (in Chinese with English abstract).
doi: 10.7668/hbnxb.2014.06.036
[34] Rubio F, Fon M, Ródenas R, Nieves-Cordones M, Alemán F, Rivero R M, Martínez V . A low K+ signal is required for functional high-affinity K+ uptake through HAK5 transporters. Physiol Plant, 2015,152:558-570.
doi: 10.1111/ppl.12205 pmid: 24716623
[35] Ashley M K, Grant M, Grabov A . Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot, 2006,57:425-436.
doi: 10.1093/jxb/erj034 pmid: 16364949
[36] Wang Y, Wu W H . Potassium transport and signaling in higher plants. Annu Rev Plant Biol, 2013,64:451-476.
doi: 10.1146/annurev-arplant-050312-120153 pmid: 23330792
[37] Chérel I, Lefoulon C, Boeglin M, Sentenac H . Molecular mechanisms involved in plant adaptation to low K+ availability. J Exp Bot, 2014,65:833-848.
doi: 10.1093/jxb/ert402
[38] Hong J, Takeshi Y, Kondou Y, Schachtman D P, Matsui M, Shin R . Identification and characterization of transcription factors regulatingArabidopsis HAK5. Plant Cell Physiol, 2013,54:1478-1490.
doi: 10.1093/pcp/pct094
[39] Kim M J, Ruzicka D, Shin R, Schachtman D P . TheArabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions. Mol Plant, 2012,5:1042-1057.
doi: 10.1093/mp/sss003
[40] Li W, Xu G, Abdel A, Yu L . Plant HAK/KUP/KT K+ transporters: function and regulation. Semin Cell Dev Biol, 2018,74:133-141.
doi: 10.1016/j.semcdb.2017.07.009 pmid: 28711523
[41] Druka A, Potokina E, Luo Z, Jiang N, Chen X, Kearsey M, Waugh R . Expression quantitative trait loci analysis in plants. Plant Biotechnol J, 2010,8:10-27.
doi: 10.1111/j.1467-7652.2009.00460.x pmid: 20055957
[1] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[2] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[3] HUANG Wen-Gong, JIANG Wei-Dong, YAO Yu-Bo, SONG Xi-Xia, LIU Yan, CHEN Si, ZHAO Dong-Sheng, WU Guang-Wen, YUAN Hong-Mei, REN Chuan-Ying, SUN Zhong-Yi, WU Jian-Zhong, KANG Qing-Hua. Transcriptome profiling of flax (Linum usttatissimum L.) response to low potassium stress [J]. Acta Agronomica Sinica, 2021, 47(6): 1070-1081.
[4] WANG Xiao-Chun, WANG Lu-Lu, ZHANG Zhi-Yong, QIN Bu-Tan, YU Mei-Qin, WEI Yi-Hao, MA Xin-Ming. Transcription characteristics of wheat glutamine synthetase isoforms and the sequence analysis of their promoters [J]. Acta Agronomica Sinica, 2021, 47(4): 761-769.
[5] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[6] LI Lan-Lan, MU Dan, YAN Xue, YANG Lu-Ke, LIN Wen-Xiong, FANG Chang-Xun. Effect of OsPAL2;3 in regulation of rice allopathic inhibition on barnyardgrass (Echinochloa crusgalli L.) [J]. Acta Agronomica Sinica, 2021, 47(2): 197-209.
[7] WANG Zhen, ZHANG Xiao-Li, MENG Xiao-Jing, YAO Meng-Nan, MIU Wen-Jie, YUAN Da-Shuang, ZHU Dong-Ming, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Identification of upstream regulators for mitogen-activated protein kinase 7 gene (BnMAPK7) in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(12): 2379-2393.
[8] LI Na-Na, LIU Ying, ZHANG Hao-Jie, WANG Lu, HAO Xin-Yuan, ZHANG Wei-Fu, WANG Yu-Chun, XIONG Fei, YANG Ya-Jun, WANG Xin-Chao. Promoter cloning and expression analysis of the hexokinase gene CsHXK2 in tea plant (Camellia sinensis) [J]. Acta Agronomica Sinica, 2020, 46(10): 1628-1638.
[9] CHANG Jian-Zhong,DONG Chun-Lin,ZHANG Zheng,QIAO Lin-Yi,YANG Rui,JIANG Dan,ZHANG Yan-Qin,YANG Li-Li,WU Jia-Jie,JING Rui-Lian. Function analysis of 5′ untranslated region introns in drought-resistance gene TaSAP1 [J]. Acta Agronomica Sinica, 2019, 45(9): 1311-1318.
[10] Xiao-Hong ZHANG,Gen-Hai HU,Han-Tao WANG,Cong-Cong WANG,Heng-Ling WEI,Yuan-Zhi FU,Shu-Xun YU. Expression and promoter activity of GhTFL1a and GhTFL1c in Upland cotton [J]. Acta Agronomica Sinica, 2019, 45(3): 469-476.
[11] Mi WU,Nian WANG,Chao SHEN,Cong HUANG,Tian-Wang WEN,Zhong-Xu LIN. Development and evaluation of InDel markers in cotton based on whole-genome re-sequencing data [J]. Acta Agronomica Sinica, 2019, 45(2): 196-203.
[12] Cong HUANG,Xiao-Fang LI,Ding-Guo LI,Zhong-Xu LIN. QTL Mapping for Yield, Growth Period and Plant Height Traits Using MAGIC Population in Upland Cotton [J]. Acta Agronomica Sinica, 2018, 44(9): 1320-1333.
[13] Chao LI,Zhi-Kun LI,Qi-Shen GU,Jun YANG,Hui-Feng KE,Li-Qiang WU,Guo-Ning WANG,Yan ZHANG,Jin-Hua WU,Gui-Yin ZHANG,Yuan-Yuan YAN,Zhi-Ying MA,Xing-Fen WANG. Molecular Evaluation for Chromosome Segment Substitution Lines of Gossypium barbadense and QTL Mapping for Fiber Quality and Yield [J]. Acta Agronomica Sinica, 2018, 44(8): 1114-1126.
[14] Rui-Juan YANG,Jian-Rong BAI,Lei YAN,Liang SU,Xiu-Hong WANG,Rui LI,Cong-Zhuo ZHANG. Cloning and Expression Analysis of Strong Inducible Promoter P1502-ZmPHR1 Responding to Low Phosphorus Stress in Maize [J]. Acta Agronomica Sinica, 2018, 44(7): 1000-1009.
[15] Guo-Zhong ZHU,Fang ZHANG,Jie FU,Le-Chen LI,Er-Li NIU,Wang-Zhen GUO. Genome-wide Screening and Evaluation of SNP Core Loci for Identification of Upland Cotton Varieties [J]. Acta Agronomica Sinica, 2018, 44(11): 1631-1639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!