Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (10): 1557-1565.doi: 10.3724/SP.J.1006.2020.04007

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Selection of candidate genes for chlorophyll content in leaves of Brassica napus using genome-wide association analysis

JIAN Hong-Ju1,2(), HUO Qiang1,2(), GAO Yu-Min1,2, LI Yang-Yang1,2, XIE Ling1,2, WEI Li-Juan1,2, LIU Lie-Zhao1,2, LU Kun1,2, LI Jia-Na1,2,*()   

  1. 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    2 Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
  • Received:2020-01-12 Accepted:2020-04-15 Online:2020-10-12 Published:2020-04-27
  • Contact: Jia-Na LI E-mail:hjjian518@swu.edu.cn;354011524@qq.com;ljn1950@swu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2018YFD0100504-05);Special Project of Chongqing People’s Livelihood(cstc2016shms-ztzx80020)

Abstract:

Increasing rapeseed production is important to ensure the national food and oil security. According to the theory of crop source and sink, sufficient photosynthate (sources) is the premise of high yield, and chlorophyll is the important substance for photosynthesis. Therefore, breeding high chlorophyll content Brassica napus is an important way to ensure high yield. In our previous study, 588 excellent germplasm resources collected worldwide were re-sequenced with 5x and 385,692 high-quality SNP markers were obtained. SPAD-502 chlorophyll meter was used to measure the total chlorophyll content of mature leaves in 2018-2019. Genome wide association study (GWAS) was conducted to screen SNP sites significantly related to chlorophyll content. Five SNP loci were identified in 2018, with a contribution rate of 5.51%-7.89%, of which S6_3493805 had the largest contribution. 46 SNP loci were detected in 2019, with a contribution rate of 7.29%-10.34%, of which S13_11413088 had the largest contribution. In total, 2022 rapeseed genes were screened out by comparing the reference genome with genes in the regions of the 500 kb before and after the SNP. Based on the function of Arabidopsis homologous genes previously reported, screened 23 candidate genes, among which five were homologous genes in chlorophyll synthesis pathway. These results lay a foundation for the genetic improvement of chlorophyll content in leaves of B. napus in future.

Key words: Brassica napus, chlorophyll content, GWAS, candidate genes

Table 1

List of primer sequences for candidate genes"

基因Gene 引物序列Primer sequence (5°-3°)
BnaA04g00600D F: AAATGTCGTTGAGGAATTACGC; R: TGAATGATATACGTCAGCACCA
BnaC09g54390D F: AAGGAGCTAACACAATGACTGA; R: GGTATCATCACAGGTAACCCAT
BnaC03g18820D F: AATCATGTTTCCATTAGCCACG; R: CATTACCACCGTTGAAAACCAA
BnaC06g24160D F: AATGTTGCGCATTATCTTCCTC; R: TGTTTGTAGTGTTTCCAGGAGT
BnaC07g39280D F: AGAAAACGATGCTTATGCTGAC; R: CATAGCTGCAGAGATATCGCTA
BnaA04g00500D F: AGCTCATATACATTGTGGAGCA; R: TGCTGCTAGATTGGTCTAAGAG
BnaA02g24670D F: CTAATCGAATCAAGCCCTGTTG; R: GGTGAAAACGCAAAGAAATTGG
BnaC02g01240D F: CTCAAGGAGCTATTGGAATTGC; R: TATCCAGCAATAGGTGTACGAC
BnaC03g20950D F: CTTTATGGTGTTGGCCAAGTAC; R: AACTTTACCACGCCGTATTTTC
BnaC05g38600D F: GACTCTCTGAAGATACTGAGGC; R: ACTCTTGATCACCGTATACGTC
BnaA10g02050D F: GAGCTGGAACAATAACTCCTCT; R: CACAGTTTCTTTGCCTTCTCTG
BnaC05g10770D F: GAGTGTTCCTGATTGTATGCAC; R: AGATGTGCCAATCCAAAAGAAC
BnaC04g01850D F: GATAGGAACGGTGATGGTTTTG; R: TTCCGTCACGAAATTAAAACCC
BnaC02g25030D F: GTAAATGTGCCTGATGAGGTTG; R: TGAACAATCTCTTCGTCAAGGA
BnaA06g06000D F: GTCGCTGCTTAAACAGTTACAA; R: GAAACCCAACAAAGAGTGAACA
BnaA05g01720D F: GTTCACAACGTCAATGATCACA; R: GTGGCCCAAGAATCAAAGATTT
BnaC08g27000D F: GTTTCTGAACGAACAGGTTGAA; R: ATTTAAGCAGCAGCAGAAGTTC
BnaC09g05970D F: TTACTAGCTTGGCTCACACTAC; R: CGTTCTCATCAACAACACTCAG
BnaC09g05970D F: TTACTAGCTTGGCTCACACTAC; R: CGTTCTCATCAACAACACTCAG
BnaA01g20460D F: TTATCAAGCGTGCGAAGTAAAG; R: CGCGCTGATCTTAACCTAGTTA
BnaC08g27310D F: TTTGCTACCTGTTGAAAACGAC; R: TTATTCAACTGTGACAAAGCCG

Table 2

Phenotypic variation of chlorophyll content in natural population"

性状
Trait
环境
Environment
均值±标准差
Mean ± SD
范围
Range
变异系数
CV (%)
叶绿素含量 2018 47.79±5.39 33.44-65.82 11.27
Chlorophyll content 2019 46.37±5.90 32.92-72.04 12.73

Fig. 1

Frequency distribution of chlorophyll content in leaves of B. napus"

Fig. 2

Quantile-quantile plot for six models of chlorophyll contents"

Fig. 3

Manhattan plots of association analysis using the optimal model of chlorophyll contents"

Table 3

Summary of significant SNPs for chlorophyll content by using the best model"

环境Environment 位点
SNP
染色体
Chr.
位置
Position
阈值
lg (P-value)
贡献率
R2 (%)
2018 S1_12845378 A03 12,845,378 5.73 5.51
S6_3493805 A06 3,493,805 7.49 7.89
S6_3812220 A06 3,812,220 6.05 6.10
S10_4969863 A10 4,969,863 6.25 6.23
S14_37741561 C04 37,741,561 5.69 5.67
2019 S1_12688640 A01 12,688,640 6.39 8.42
S1_12540615 A01 12,540,615 6.10 8.24
S1_10570293 A01 10,570,293 5.93 8.51
S1_12628926 A01 12,628,926 5.86 8.28
S1_12540545 A01 12,540,545 5.84 7.67
S1_12540622 A01 12,540,622 5.83 7.66
环境Environment 位点
SNP
染色体
Chr.
位置
Position
域值
lg (P-value)
贡献率
R2 (%)
2019 S1_12628563 A01 12,628,563 5.79 9.76
S1_12568566 A01 12,568,566 5.78 7.55
S2_17839296 A02 17,839,296 6.91 9.73
S3_13514793 A03 13,514,793 5.73 7.72
S4_547942 A04 547,942 5.93 8.08
S8_16108365 A08 16,108,365 6.46 8.44
S8_16192480 A08 16,192,480 5.88 7.80
S8_16181282 A08 16,181,282 5.78 7.85
S8_16103637 A08 16,103,637 5.61 7.97
S8_16181355 A08 16,181,355 5.60 7.29
S9_10532790 A09 10,532,790 6.18 8.70
S10_14050715 A10 14,050,715 5.61 7.72
S12_20495602 C02 20,495,602 5.95 9.35
S12_22225349 C02 22,225,349 5.74 8.76
S13_11413088 C03 11,413,088 7.01 10.34
S13_11423629 C03 11,423,629 6.95 9.31
S13_11415175 C03 11,415,175 6.61 8.92
S13_11433444 C03 11,433,444 6.39 8.88
S13_11433450 C03 11,433,450 6.38 8.87
S13_9816561 C03 9,816,561 6.06 8.70
S13_48351338 C03 48,351,338 6.00 8.06
S13_11249216 C03 11,249,216 5.97 8.22
S14_7018412 C04 7,018,412 6.81 9.39
S14_1487936 C04 1,487,936 5.73 7.96
S14_5798300 C04 5,798,300 5.68 8.45
S14_36521995 C04 36,521,995 5.60 7.95
S15_6002527 C05 6,002,527 6.06 8.65
S16_24042352 C06 24,042,352 6.55 9.94
S16_14397036 C06 14,397,036 6.31 8.84
S16_25797577 C06 25,797,577 6.25 8.34
S16_25797598 C06 25,797,598 6.14 8.15
S16_25233735 C06 25,233,735 6.14 8.09
S16_25797558 C06 25,797,558 6.00 8.46
S16_25234451 C06 25,234,451 5.97 8.45
S16_25234262 C06 25,234,262 5.92 8.11
S16_25797570 C06 25,797,570 5.89 8.06
S16_25234230 C06 25,234,230 5.88 8.31
S18_31711591 C08 31,711,591 6.32 8.85
S18_28228959 C08 28,228,959 5.77 8.36
S19_32818852 C09 32,818,852 5.62 8.15

Table 4

Candidate genes for chlorophyll content"

基因名字
Gene name
物理位置
Physical position
拟南芥同源基因
Homologs in A. thaliana
功能注释
Functional annotation
BnaA01g20460D A01:12331065-1233745 AT3G48740 Nodulin MtN3 family protein
BnaA02g24670D A02:17989410-17990090 AT5G46780 VQ motif-containing protein
BnaA04g00500D A04:365464-366530 AT3G61890 Homeobox 12 (HB-12)
BnaA04g00600D A04:460722-461017 AT3G61640 Arabinogalactan protein 20 (AGP20)
BnaA05g01720D A05:984996-986020 AT2G40490 HEME2
BnaA06g06000D A06:3306811-3307795 AT1G10200 WLIM1
BnaA10g02050D A10:1025298-1027102 AT1G03630 Protochlorophyllide oxidoreductase C (POR C)
BnaC02g01240D C02:511615-513517 AT5G08280 Hydroxymethylbilane synthase (HEMC)
BnaC02g25030D C02:22402218-22403498 AT1G07440 NAD(P)-binding Rossmann-fold superfamily protein
BnaC03g18820D C03:9634933-9635479 AT2G33830 Dormancy/auxin associated family protein
BnaC03g20950D C03:11192271-11192876 AT2G37970 SOUL-1
BnaC04g01850D C04:1467437-1468078 AT2G41410 Calcium-binding EF-hand family protein
BnaC05g10770D C05:6194068-6195531 AT1G14480 Ankyrin repeat family protein
基因名字
Gene name
物理位置
Physical position
拟南芥同源基因
Homologs in A. thaliana
功能注释
Functional annotation
BnaC05g38600D C05:37280225-37281849 AT3G14930 HEME1
BnaC06g24160D C06:25958767-25959390 AT1G72610 Germin-like protein 1 (GER1)
BnaC07g39280D C07:40238482-40239858 AT4G25080 Magnesium-protoporphyrin IX methyltransferase (CH LM)
BnaC08g27000D C08:28191454-28192970 AT3G56090 Ferritin 3 (FER3)
BnaC08g27310D C08:28357417-28358091 AT3G56360 Unknown protein
BnaC09g05970D C09:3640560-3642915 AT5G63570 Glutamate-1-semialdehyde-2,1-aminomutase (GSA1)
BnaC03g18980D chrC03:9831772-9832572 AT2G34430 Light-harvesting chlorophyll-protein complex II subunit B1 (LHB1B1)
BnaC02g25060D chrC02:22446772-22448037 AT1G78600 Light-regulated zinc finger protein 1 (LZF1)
BnaA04g00660D chrA04:488057-489279 AT3G61470 Photosystem I light harvesting complex gene 2 (LHCA2)
BnaA08g22200D chrA08:16221799-16222764 AT1G19150 Photosystem I light harvesting complex gene 6 (LHCA6)

Fig. 4

Expression profiles of chlorophyll content candidate genes in leaves of B. napus using qRT-PCR"

[1] Von Wettstein D, Gough S, Kannangara C G. Chlorophyll biosynthesis. Plant Cell, 1995,7:1039-1057.
doi: 10.1105/tpc.7.7.1039 pmid: 12242396
[2] Eckhardt U, Grimm B, Hortensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol, 2004,56:1-14.
doi: 10.1007/s11103-004-2331-3
[3] Tanaka A, Tanaka R. Chlorophyll metabolism. Curr Opin Plant Biol, 2006,9:248-255.
doi: 10.1016/j.pbi.2006.03.011 pmid: 16603411
[4] Tanaka R, Tanaka A. Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol, 2007,58:321-346.
doi: 10.1146/annurev.arplant.57.032905.105448 pmid: 17227226
[5] Mochizuki N, Tanaka R, Grimm B, Masuda T, Moulin M, Smith A G, Tanaka A, Terry M J. The cell biology of tetrapyrroles: a life and death struggle. Trends Plant Sci, 2010,15:488-498.
doi: 10.1016/j.tplants.2010.05.012 pmid: 20598625
[6] Solymosi K, Schoefs B. Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. Photosynth Res, 2010,105:143-166.
doi: 10.1007/s11120-010-9568-2
[7] Buhr F, El Bakkouri M, Valdez O, Pollmann S, Lebedev N, Reinbothe S, Reinbothe C. Photoprotective role of NADPH: protochlorophyllide oxidoreductase A. Proc Natl Acad Sci USA, 2008,105:12629-12634.
doi: 10.1073/pnas.0803950105 pmid: 18723681
[8] Zhu L, Yang Z, Zeng X, Gao J, Liu J, Yi B, Ma C, Shen J, Tu J, Fu T, Wen J. Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus. Plant Mol Biol, 2017,93:579-592.
doi: 10.1007/s11103-017-0583-y pmid: 28108964
[9] Williams Carrier R, Zoschke R, Belcher S, Pfalz J, Barkan A. A major role for the plastid-encoded RNA polymerase complex in the expression of plastid transfer RNAs. Plant Physiol, 2014,164:239-248.
doi: 10.1104/pp.113.228726
[10] Zhang K, Zhang Y, Chen G, Tian J. Genetic analysis of grain yield and leaf chlorophyll content in common wheat. Cereal Res Commun, 2009,37:499-511.
doi: 10.1556/CRC.37.2009.4.3
[11] Feng B, Liu P, Li G, Dong S T, Wang F H, Kong L A, Zhang J W. Effect of heat stress on the photosynthetic characteristics in flag leaves at the grain-filling stage of different heat-resistant winter wheat varieties. J Agron Crop Sci, 2014,200:143-155.
doi: 10.1111/jac.12045
[12] Kassahun B, Bidinger F R, Hash C T, Kuruvinashetti M S. Stay-green expression in early generation sorghum [Sorghum bicolor (L.) Moench] QTL introgression lines. Euphytica, 2010,172:351-362.
doi: 10.1007/s10681-009-0108-0
[13] Cai H G, Chu Q, Yuan L X, Liu J C, Chen X H, Chen F J, Mi G H, Zhang F S. Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Mol Breed, 2012,30:251-266.
doi: 10.1007/s11032-011-9615-5
[14] Czyczylo Mysza I, Tyrka M, Marcinska I, Skrzypek E, Karbarz M, Dziurka M, Hura T, Dziurka K, Quarrie S A. Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. Mol Breed, 2013,32:189-210.
doi: 10.1007/s11032-013-9862-8 pmid: 23794940
[15] Jiang S, Zhang X, Zhang F, Xu Z, Chen W, Li Y. Identification and fine mapping of qCTH4, a quantitative trait loci controlling the chlorophyll content from tillering to heading in rice (Oryza sativa L.). J Hered, 2012,103:720-726.
doi: 10.1093/jhered/ess041
[16] Dhanapal A P, Ray J D, Singh S K, Hoyos Villegas V, Smith J R, Purcell L C, Fritschi F B. Genome-wide association mapping of soybean chlorophyll traits based on canopy spectral reflectance and leaf extracts. BMC Plant Biol, 2016,16:174.
doi: 10.1186/s12870-016-0861-x pmid: 27488358
[17] Wang Y K, He Y J, Yang M, He J B, Xu P, Shao M Q, Chu P, Guan R Z. Fine mapping of a dominant gene conferring chlorophyll-deficiency in Brassica napus. Sci Rep, 2016,6:31419. doi: 10.1038/srep31419.
doi: 10.1038/srep31419 pmid: 27506952
[18] Qian L W, Voss Fels K, Cui Y X, Jan H U, Samans B, Obermeier C, Qian W, Snowdon R J. Deletion of a stay-green gene associates with adaptive selection in Brassica napus. Mol Plant, 2016,9:1559-1569.
doi: 10.1016/j.molp.2016.10.017 pmid: 27825945
[19] Ge Y, Wang T, Wang N, Wang Z, Liang C, Ramchiary N, Choi S R, Lim Y P, Piao Z Y. Genetic mapping and localization of quantitative trait loci for chlorophyll content in Chinese cabbage (. Sci Hortic-Amsterdam, 2012,147:42-48.
doi: 10.1016/j.scienta.2012.09.004
[20] Luo J. Metabolite-based genome-wide association studies in plants. Curr Opin Plant Biol, 2015,24:31-38.
doi: 10.1016/j.pbi.2015.01.006 pmid: 25637954
[21] Su J J, Li L B, Zhang C, Wang C X, Gu L J, Wang H T, Wei H L, Liu Q B, Huang L, Yu S X. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton. Theor Appl Genet, 2018,131:1299-1314.
doi: 10.1007/s00122-018-3079-5 pmid: 29497767
[22] Li T G, Ma X F, Li N Y, Zhou L, Liu Z, Han H Y, Gui Y J, Bao Y M, Chen J Y, Dai X F. Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.). Plant Biotechnol J, 2017,15:1520-1532.
doi: 10.1111/pbi.12734 pmid: 28371164
[23] Fahrenkrog A M, Neves L G, Resende M F R, Vazquez A I, de los Campos G, Dervinis C, Sykes R, Davis M, Davenport R, Barbazuk W B, Kirst M. Genome-wide association study reveals putative regulators of bioenergy traits in Populus deltoides. New Phytol, 2017,213:799-811.
doi: 10.1111/nph.14154 pmid: 27596807
[24] Wei W, Mesquita A C O, Figueiro A D, Wu X, Manjunatha S, Wickland D P, Hudson M E, Juliatti F C, Clough S J. Genome-wide association mapping of resistance to a Brazilian isolate of Sclerotinia sclerotiorum in soybean genotypes mostly from Brazil. BMC Genomics, 2017,18:849.
doi: 10.1186/s12864-017-4160-1 pmid: 29115920
[25] Lu K, Wei L J, Li X L, Wang Y T, Wu J, Liu M, Zhang C, Chen Z Y, Xiao Z C, Jian H J, Cheng F, Zhang K, Du H, Cheng X C, Qu C M, Qian W, Liu L Z, Wang R, Zou Q Y, Ying J M, Xu X F, Mei J Q, Liang Y, Chai Y R, Tang Z L, Wan H F, Ni Y, He Y J, Lin N, Fan Y H, Sun W, Li N N, Zhou G, Zheng H K, Wang X W, Paterson A H, Li J N. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun, 2019,10:1154.
doi: 10.1038/s41467-019-09134-9 pmid: 30858362
[26] Chalhoub B, Denoeud F, Liu S Y, Parkin I A P, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953.
doi: 10.1126/science.1253435 pmid: 25146293
[27] Fu Y, Wei D Y, Dong H L, He Y J, Cui Y X, Mei J Q, Wan H F, Li J, Snowdon R, Friedt W, Li X R, Qian W. Comparative quantitative trait loci for silique length and seed weight in Brassica napus. Sci Rep, 2015,5:14407.
doi: 10.1038/srep14407 pmid: 26394547
[28] Wang X D, Chen L, Wang A N, Wang H, Tian J H, Zhao X P, Chao H B, Zhao Y J, Zhao W G, Xiang J, Gan J P, Li M T. Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus. BMC Plant Biol, 2016,16:71.
doi: 10.1186/s12870-016-0759-7 pmid: 27000872
[29] Jian H J, Zhang A X, Ma J Q, Wang T Y, Yang B, Shuang L S, Liu M, Li J N, Xu X F, Paterson A H, Liu L Z. Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica napus L. BMC Genomics, 2019,9:390.
doi: 10.1186/1471-2164-9-390 pmid: 18713468
[30] Shen Y S, Xiang Y, Xu E S, Ge X H, Li Z Y. Major co-localized QTL for plant height, branch initiation height, stem diameter, and flowering time in an alien introgression derived Brassica napus DH population. Front Plant Sci, 2018,9:390.
doi: 10.3389/fpls.2018.00390 pmid: 29643859
[31] Lu K, Xiao Z C, Jian H J, Peng L, Qu C M, Fu M L, He B, Tie L M, Liang Y, Xu X F, Li J N. A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits in Brassica napus. Sci Rep, 2016,6:36452.
doi: 10.1038/srep36452 pmid: 27811979
[32] Wang J, Xian X H, Xu X F, Qu C M, Lu K, Li J N, Liu L Z. Genome-wide association mapping of seed coat color in Brassica napus. J Agric Food Chem, 2017,65:5229-5237.
doi: 10.1021/acs.jafc.7b01226 pmid: 28650150
[33] Xiao Z C, Zhang C, Tang F, Yang B, Zhang L Y, Liu J S, Huo Q, Wang S F, Li S T, Wei L J, Du H, Qu C M, Lu K, Li J N, Li N N. Identification of candidate genes controlling oil content by combination of genome-wide association and transcriptome analysis in the oilseed crop Brassica napus. Biotechnol Biofuels, 2019,12:216.
doi: 10.1186/s13068-019-1557-x pmid: 31528204
[34] Ferreira V D S, Anna C S. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World J Microbiol Biotechnol, 2017,33:20.
doi: 10.1007/s11274-016-2181-6 pmid: 27909993
[35] Peltier J B, Ytterberg A J, Sun Q, van Wijk K J. New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy. J Biol Chem, 2004,279:49367-49383.
doi: 10.1074/jbc.M406763200 pmid: 15322131
[36] Wientjes E, Croce R. The light-harvesting complexes of higher-plant Photosystem I: Lhca1/4 and Lhca2/3 form two red-emitting heterodimers. Biochem J, 2011,433:477-485.
doi: 10.1042/BJ20101538 pmid: 21083539
[37] Otani T, Yamamoto H, Shikanai T. Stromal loop of lhca6 is responsible for the linker function required for the NDH-PSI supercomplex formation. Plant Cell Physiol, 2017,58:851-861.
doi: 10.1093/pcp/pcx009 pmid: 28184910
[38] Chang C S J, Li Y H, Chen L T, Chen W C, Hsieh W P, Shin J, Jane W N, Chou S J, Choi G, Hu J M, Somerville S, Wu S H. LZF1, a HY5-regulated transcriptional factor, functions in Arabidopsis de-etiolation. Plant J, 2008,54:205-219.
doi: 10.1111/j.1365-313X.2008.03401.x pmid: 18182030
[39] Chang C S J, Maloof J N, Wu S H. COP1-mediated degradation of BBX22/LZF1 optimizes seedling development in Arabidopsis. Plant Physiol, 2011,156:228-239.
doi: 10.1104/pp.111.175042
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[3] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[4] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[5] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[6] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[7] ZHAO Hai-Han, LIAN Wang-Min, ZHAN Xiao-Deng, XU Hai-Ming, ZHANG Ying-Xin, CHENG Shi-Hua, LOU Xiang-Yang, CAO Li-Yong, HONG Yong-Bo. Genetic dissection of the bacterial blight disease resistance in super hybrid rice RILs using genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(1): 121-137.
[8] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[9] ZENG Wei-Ying, LAI Zhen-Guang, SUN Zu-Dong, YANG Shou-Zhen, CHEN Huai-Zhu, TANG Xiang-Min. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq [J]. Acta Agronomica Sinica, 2021, 47(8): 1460-1471.
[10] MA Juan, CAO Yan-Yong, LI Hui-Yong. Genome-wide association study of ear cob diameter in maize [J]. Acta Agronomica Sinica, 2021, 47(7): 1228-1238.
[11] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[12] CHEN Can, NONG Bao-Xuan, XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting, YANG Xing-Hai. Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi [J]. Acta Agronomica Sinica, 2021, 47(6): 1114-1123.
[13] LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798.
[14] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
[15] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!