Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (3): 416-426.doi: 10.3724/SP.J.1006.2021.04108

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L.

TANG Jing-Quan(), WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong*   

  1. National Key Laboratory of Crop Genetic Improvement / National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2020-05-15 Accepted:2020-08-19 Online:2021-03-12 Published:2020-09-08
  • Contact: SHEN Jin-Xiong E-mail:519736700@qq.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31871654)

Abstract:

Sucrose non-fermenting-1-related protein kinase (SnRK) is a widely existed serine/threonine protein kinase in plants, which is involved in the regulation of biological processes such as signal transduction, stress response and seed growth. In order to explore the mechamism of the SnRK gene families and its influence on the seed oil content of Brassica napus L., BnSnRK gene family system evolution, gene structure, physical and chemical properties of protein, conservative motif, protein secondary structure, cis-element and subcellular localization prediction were analyzed, and BnSnRK genes affecting oil content of seeds were screened by candidate genes association analysis, haplotype analysis and qRT-PCR. The results showed that 92 BnSnRK members were identified and divided into three subgroups, distributed on 19 chromosomes of Brassica napus L. The physical and chemical properties of proteins were significantly different among subgroups. Most genes had 7-14 exons; the motifs of the same subfamily were more similar in distribution. The BnSnRK family was mainly expressed in the cytoplasm. 12 family members related to the oil content were screened out by association analysis in rapeseed. Genes BnaC02g10730D might negatively regulate seed oil content, while genes BnaA07g12290D, BnaA10g22850D, BnaA08g18050D, and BnaC04g44390D might positively regulate seed oil content of Brassica napus L. There were significant differences in seed oil content under different environments, and 12 oil-related members all contained MYB, MYC and ABA response elements. Environment-specific oil-related genes might be related to plant abiotic stress response. This study provides a theoretical basis for BnSnRK gene functional verification and breeding.

Key words: Brassica napus, seed oil content, sucrose non-fermenting-1-related protein kinase, association analysis, bioinformation analysis

Fig. 1

Association analysis of seed oil content and fatty acid components based on BnSnRK in rapeseed The figure shows the summary of the association analysis results under the looser screening conditions. There were eight layers of dotted labeling, and the phenotypes from inner to outer circles in order were oil content, palmitic acid, stearic acid, oleic acid, linoleic acid, linoleic acid, linolenic acid, erucic acid, and arachidonic acid. The square label shows the composition of 18 carbon fatty acids."

Fig. s2

Comparison of physical and chemical properties of SnRK subfamilies"

Table s1

Secondary structure analysis of BnSnRK protein (%)"

结构类型
Structure type
BnSnRK1 BnSnRK2 BnSnRK3
最小值
Minimum
最大值
Maximum
标准差
Standard deviation
最小值
Minimum
最大值
Maximum
标准差
Standard deviation
最小值
Minimum
最大值
Maximum
标准差
Standard deviation
α-螺旋
Alpha helix
31.62 34.83 0.98 31.58 45.50 3.52 31.62 41.12 2.14
β-转角
Beta angle
5.85 7.44 0.58 4.14 8.65 1.29 8.14 12.56 0.96
不规则卷曲
Irregular crimp
40.70 44.92 1.30 34.05 43.09 2.50 29.95 39.92 2.50
延伸链
Extending chain
15.82 18.96 0.91 13.01 20.35 1.83 15.73 21.10 1.22

Fig. s3

Enrichment analysis of BnSnRK gene family members"

Fig. s1

Prediction of subcellular localization of SnRK gene family"

Fig. s4

Copert-acting element analysis of BnSnRK family promoter MYB: MYB tran-scription factor response element; MYC: MYC transcription factor response element; MBS: MYB binding site."

Fig. 2

Phylogenetic tree, CDD conservative structures, and gene structures of representative members of BnSnRK gene family The BnSnRK gene family are divided into three subfamilies: the red region represents SnRK1 subfamily, the blue region represents SnRK2 subfamily, and the yellow region represents SnRK3 subfamily."

Fig. s5

Conservative motif analysis of some members of BnSnRK"

Fig. 10

Fig. S6 Manhattan diagram of association analysis of seed oil content in E4 environment"

Table 1

Repeatedly detected sites associated with seed oil content of rapeseed"

基因名称
Gene name
环境
Environment
标记
Marker
染色体
Chromosome
LOD值
LOD value
阈值
-log10 (P)
表型贡献率
R2 (%)
单倍型频率
Haplotype frequency
BnaA07g12290D E2 s5667 A7 3.79 4.53 7.79 0.42
BnaA10g22850D E2 s7970 A10 4.50 5.33 12.95 0.30
BnaA07g12290D E4 s5664 A7 3.42 4.14 1.99 0.48
BnaA07g12290D E4 s5675 A7 4.46 5.23 3.07 0.28
BnaA10g22850D E4 s8059 A10 5.44 6.26 6.70 0.11
BnaA10g22850D E4 s8018 A10 8.16 9.06 6.34 0.09
BnaA07g12290D E5 s5674 A7 5.07 5.87 4.16 0.28

Fig. s7

Haplotype analysis boxplot Haplotype ACT and haplotype CTC were the haplotypes with the lowest and highest oil content of gene BnaA10g28850D, respectively, and were represented by green boxes in E2, E4, and E5 environments. Haplotype GGGT and TAAC were the haplotypes with the lowest and highest oil content of gene BnaA07g12290D, respectively. The borders of the boxes in each environment are colored differently."

Table s2

Multiple comparisons of haplotype analysis"

因变量: 含油量
Dependent variable: oil content
(I) 单倍型
Haploid type
(J) 单倍型
Haploid type
平均差异
Average difference
标准误
Standard error
显著性
Significant
BnaA07g12290D GAGT GGAC -0.48587 0.59894 0.418
GGGT 0.31362 0.59408 0.598
TAAC -1.04697 0.56187 0.063
GGAC GAGT 0.48587 0.59894 0.418
GGGT 0.79949* 0.37903 0.035
TAAC -0.5611 0.32624 0.086
GGGT GAGT -0.31362 0.59408 0.598
GGAC -0.79949* 0.37903 0.035
TAAC -1.36059* 0.31722 0.000
TAAC GAGT 1.04697 0.56187 0.063
GGAC 0.5611 0.32624 0.086
GGGT 1.36059* 0.31722 0.000
BnaA10g22850D ACT CTC -2.57628* 0.44087 0.000
CTT -1.01843 0.85095 0.232
CTC ACT 2.57628* 0.44087 0.000
CTT 1.55785* 0.76008 0.041
CTT ACT 1.01843 0.85095 0.232
CTC -1.55785* 0.76008 0.041

Fig. 3

Expression levels of oil-related candidate genes in the seed of Brassica napus A: expression of oil-related candidate genes of BnSnRK gene family in young seeds of rapeseed detected by qRT-PCR; B: relative expression of all candidate genes."

Fig. s8

Chromosome location distribution of SnRK gene family In the figure, the member names of BnSnRK1, BnSnRK2, and BnSnRK3 subgroup are represented by green, red, and black respectively. Random chromosome without member distribution does not appear in the figure."

Fig. 4

Homologous comparison of SnRK gene family in Brassica napus (A) and collinear association of cabbage, Brassica napus, and Chinese cabbage (B) The light blue background line in figure A is a collinearity gene pair between SnRK gene family members of Brassica napus. The color line will highlight gene member that may be related to the seed oil content of Brassica napus. In figure B, the gray background line represents the collinear block in the whole genome, and the highlighted line represents the collinear relationship between the BnSnRK gene family members in three species."

[1] Halford N G, Hardie D G. SNF1-related protein kinases: global regulators of carbon metabolism in plants? Plant Mol Biol, 1998,37:735-748.
doi: 10.1023/a:1006024231305 pmid: 9678569
[2] Halford N G, Hey S, Jhurreea D, Laurie S, McKibbin R S, Paul M, Zhang Y. Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase. J Exp Bot, 2003,54:467-475.
doi: 10.1093/jxb/erg038 pmid: 12508057
[3] Harmon A C, Gribskov M, Gubrium E, Harper J F. The CDPK superfamily of protein kinases. New Phytol, 2001,151:175-183.
[4] Jossier M, Bouly J P, Meimoun P, Arjmand A, Lessard P, Hawley S, Grahame Hardie D, Thomas M. SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABMcA signalling in Arabidopsis thaliana. Plant J, 2009,59:316-328.
doi: 10.1111/j.1365-313X.2009.03871.x pmid: 19302419
[5] Halford N G, Hey S J. Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem J, 2009,419:247-259.
doi: 10.1042/BJ20082408 pmid: 19309312
[6] Emanuelle S, Hossain M I, Moller I E, Pedersen H L, van de Meene A M, Doblin M S, Koay A, Oakhill J S, Scott J W, Willats W G, Kemp B E, Bacic A, Gooley P R, Stapleton D I. SnRK1 fromArabidopsis thaliana is an atypical AMPK. Plant J, 2015,82:183-192.
pmid: 25736509
[7] Kulik A, Wawer I, Krzywińska E, Bucholc M, Dobrowolska G. SnRK2 protein kinases—key regulators of plant response to abiotic stresses. OMICS, 2011,15:859-872.
pmid: 22136638
[8] Anderberg R J, Walker-Simmons M K. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Natl Acad Sci USA, 1992,89:10183-10187.
[9] Julkowska M M, McLoughlin F, Galvan-Ampudia C S, Rankenberg J M, Kawa D, Klimecka M, Haring M A, Munnik T, Kooijman E E, Testerink C. Identification and functional characterization of theArabidopsis Snf1-related protein kinase SnRK2.4 phosphatidic acid-binding domain. Plant Cell Environ, 2015,38:614-624.
doi: 10.1111/pce.12421 pmid: 25074439
[10] Zhao Y, Zhang Z, Gao J, Wang P, Hu T, Wang Z, Hou Y J, Wan Y, Liu W, Xie S, Lu T, Xue L, Liu Y, Macho A P, Tao W A, Bressan R A, Zhu J K. Arabidopsis duodecuple mutant of PYL ABA receptors reveals PYL repression of ABA-independent SnRK2 activity. Cell Rep, 2018,23:3340-3351.
pmid: 29898403
[11] Kim K N, Cheong Y H, Gupta R, Luan S. Interaction specificity ofArabidopsis calcineurin B-like calcium sensors and their target kinases. Plant Physiol, 2000,124:1844-1853.
pmid: 11115898
[12] Zhang H, Yang B, Liu W Z, Li H, Wang L, Wang B, Deng M, Liang W, Deyholos M K, Jiang Y Q. Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC Plant Biol, 2014,14:8.
pmid: 24397480
[13] Zhao J, Yu A, Du Y, Wang G, Li Y, Zhao G, Wang X, Zhang W, Cheng K, Liu X, Wang Z, Wang Y. Foxtail millet (Setaria italica (L.) P. Beauv) CIPKs are responsive to ABA and abiotic stresses. PLoS One, 2019,14:e0225091.
doi: 10.1371/journal.pone.0225091 pmid: 31714948
[14] de la Torre F, Gutiérrez-Beltrán E, Pareja-Jaime Y, Chakravarthy S, Martin G B, del Pozo O. The tomato calcium sensor Cbl10 and its interacting protein kinase Cipk6 define a signaling pathway in plant immunity. Plant Cell, 2013,25:2748-2764.
pmid: 23903322
[15] Tang R J, Zhao F G, Garcia V J, Kleist T J, Yang L, Zhang H X, Luan S. Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis. Proc Natl Acad Sci USA, 2015,112:3134-3139.
pmid: 25646412
[16] Mark C U, Reinhard B, Daniel I B. Asymmetric selection and the evolution of extraordinary defences. Nat Commun, 2013,1:314-334.
[17] Liang Y, Kang K, Gan L, Ning S, Xiong J, Song S, Xi L, Lai S, Yin Y, Gu J, Xiang J, Li S, Wang B, Li M. Drought-responsive genes, late embryogenesis abundant group3 (LEA3) and vicinal oxygen chelate, function in lipid accumulation inBrassica napus and Arabidopsis mainly via enhancing photosynthetic efficiency and reducing ROS. Plant Biotechnol J, 2019,17:2123-2142.
pmid: 30972883
[18] Ghillebert R, Swinnen E, Wen J, Vandesteene L, Ramon M, Norga K, Rolland F, Winderickx J. The AMPK/SNF1/SnRK1 fuel gauge and energy regulator:structure, function and regulation. FEBS J, 2011,278:3978-3990.
pmid: 21883929
[19] Hardie D G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol, 2007,8:774-785.
doi: 10.1038/nrm2249 pmid: 17712357
[20] Zhai Z, Liu H, Shanklin J. Phosphorylation of WRINKLED1 by KIN10 results in its proteasomal degradation, providing a link between energy homeostasis and lipid biosynthesis. Plant Cell, 2017,29:871-889.
pmid: 28314829
[21] Cui Y, Su Y, Wang J, Jia B, Wu M, Pei W, Zhang J, Yu J. Genome-wide characterization and analysis of CIPK gene family in two cultivated allopolyploid cotton species: sequence variation, association with seed oil content, and the role of GhCIPK6. Int J Mol Sci, 2020,21:863.
[22] Guo Y, Huang Y, Gao J, Pu Y, Wang N, Shen W, Wen J, Yi B, Ma C, Tu J, Fu T, Zou J, Shen J. CIPK9 is involved in seed oil regulation in Brassica napus L. and Arabidopsis thaliana (L.) Heynh. Biotechnol Biofuels, 2018,11:124.
[23] Chen C, Xia R, Chen H, He Y. TBtools, a Toolkit for Biologists integrating various HTS-data handling tools with a user-friendly interface. bioRxiv, 2018, https://doi.org/10.1101/289660.
doi: 10.1101/2021.01.05.425441 pmid: 33442695
[24] Wang Y, Tang H, Debarry J D, Tan X, Li J, Wang X, Lee T H, Jin H, Marler B, Guo H, Kissinger J C, Paterson A H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 2012,40:49-49.
[25] Wu P, Wang W, Duan W, Li Y, Hou X. Comprehensive analysis of the CDPK-SnRK superfamily genes in Chinese cabbage and its evolutionary implications in plants. Front Plant Sci, 2017,8:162.
doi: 10.3389/fpls.2017.00162 pmid: 28239387
[26] 马宗桓, 毛娟, 李文芳, 杨世茂, 吴金红, 陈佰鸿. 葡萄SnRK2家族基因的鉴定与表达分析. 园艺学报, 2016,43:1891-1902.
Ma Z H, Mao J, Li W F, Yang S M, Wu J H, Chen B H. Identification and expres-sion profile of the SnRK2 family genes in grapevine. Acta Hortic Sin, 2016,43:1891-1902 (in Chinese with English abstract).
[27] Held K, Pascaud F, Eckert C, Gajdanowicz P, Hashimoto K, Corratgé-Faillie C, Offenborn J N, Lacombe B, Dreyer I, Thibaud J B, Kudla J. Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Res, 2011,21:1116-1130.
pmid: 21445098
[28] Wang Y, Yan H, Qiu Z, Hu B, Zeng B, Zhong C, Fan C. Comprehensive analysis of SnRK gene family and their responses to salt stress in Eucalyptus grandis. Int J Mol Sci, 2019,20:2786-2786.
[29] Kim K N, Cheong Y H, Grant J J, Pandey G K, Luan S. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction inArabidopsis. Plant Cell, 2003,15:411-423.
doi: 10.1105/tpc.006858 pmid: 12566581
[30] 王海波. 小桐子SnRK2基因家族的全基因组鉴定及特征分析. 分子植物育种. 2016,14:2319-2329.
Wang H B. Genome-wide identification and sequence characterization of SnRK2 genes family in Jatropha curcas. Mol Plant Breed, 2016,14:2319-2329 (in Chinese with English abstract).
[31] Hrabak E M, Chan C W, Gribskov M, Harper J F, Choi J H, Halford N, Kudla J, Luan S, Nimmo H G, Sussman M R, Thomas M, Walker-Simmons K, Zhu J K, Harmon A C. TheArabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol, 2003,132:666-680.
doi: 10.1104/pp.102.011999 pmid: 12805596
[32] Lee H J, Park Y J, Seo P J, Kim J H, Sim H J, Kim S G, Park C M. Systemic immunity requires SnRK2.8-mediated nuclear import of NPR1 in Arabidopsis. Plant Cell, 2015,27:3425-3438.
doi: 10.1105/tpc.15.00371
[33] Thornton J W, DeSalle R. Gene family evolution and homology: genomics meets phylogenetics. Annu Rev Genomics Hum Genet, 2000,1:41-73.
[34] Jaramillo M A, Kramer E M. The role of developmental genetics in understanding homology and morphological evolution in plants. Int J Plant Sci, 2007,168:61-72.
doi: 10.1086/509078
[35] Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Early allopolyploid evolution in the post-NeolithicBrassica napus oilseed genome. Science, 2014,345:950-953.
doi: 10.1126/science.1253435 pmid: 25146293
[36] Deng W, Yan F, Zhang X, Tang Y, Yuan Y. Transcriptional profiling of canola developing embryo and identification of the important roles of BnDof5. 6 in embryo development and fatty acids synthesis. Plant Cell Physiol, 2015,56:1624-1640.
doi: 10.1093/pcp/pcv074 pmid: 26092973
[37] Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K. ThreeArabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol, 2009,50:1345-1363.
pmid: 19541597
[38] 崔力勃, 朱乐, 蒋立希. ABA对于十字花科油籽脂肪酸组成及储藏蛋白的影响及机制. 农业生物技术学报, 2017,25:1059-1071.
Cui L B, Zhu L, Jiang L X. Effects of ABA on fatty acid composition and stored protein of cruciferous oilseeds. J Agric Biotechnol, 2017,25:1059-1071 (in Chinese with English abstract).
[39] Zheng Z, Xu X, Crosley R A, Greenwalt S A, Sun Y, Blakeslee B, Wang L, Ni W, Sopko M S, Yao C, Yau K, Burton S, Zhuang M, McCaskill D G, Gachotte D, Thompson M, Greene T W. The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth inArabidopsis. Plant Physiol, 2010,153:99-113.
pmid: 20200070
[40] Pandey G K, Cheong Y H, Kim B G, Grant J J, Li L, Luan S. CIPK9: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis. Cell Res, 2007,17:411-421.
doi: 10.1038/cr.2007.39 pmid: 17486125
[41] Ali G M, Komatsu S. Proteomic analysis of rice leaf sheath during drought stress. J Proteome Res, 2006,5:396-403.
doi: 10.1021/pr050291g pmid: 16457606
[42] Hadiarto T, Tran L S. Progress studies of drought-responsive genes in rice. Plant Cell Rep, 2011,30:297-310.
doi: 10.1007/s00299-010-0956-z pmid: 21132431
[43] Shinozaki K, Shinozaki K Y. Gene expression and signal transduction in water-stress response. Plant Physiol, 1997,115:327-334.
pmid: 12223810
[44] Li J, Wang X Q, Watson M B, Assmann S M. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science, 2000,287:300-303.
doi: 10.1126/science.287.5451.300 pmid: 10634783
[45] 余义和, 李秀珍, 郭大龙, 张会灵, 杨英军, 李学强, 张国海. 葡萄类钙调磷酸酶B亚基互作蛋白激酶VvCIPK10的特性与表达. 中国农业科学, 2016,49:3798-3806.
Yu Y H, Li X Z, Guo D L, Zhang H L, Yang Y J, Li X Q, Zhang G H. Characteristics and expression of calcineurin like B subunit interaction protein VvCIPK10 in grapevine. Sci Agric Sin, 2016,49:3798-3806 (in Chinese with English abstract).
[46] Malekzadeh M, Mirmazloum I, Mortazavi S N, Angourani H R, Panahi M. The physicochemical properties and oil constituents of milk thistle (Silybum marianum Gaertn. cv. Budakalászi) under drought stress. J Med Plants Res, 2011,5:1485-1488.
[47] Mailer R J, Cornish P S. Effects of water stress on glucosinolate and oil concentrations in the seeds of rape (Brassica napus L.) and turnip rape (Brassica rapa L. var. silvestris [Lam.] Briggs). Aust J Exp Agric, 1987,27:707-711.
[48] Canvin D T. The effect of temperature on the oil content and fatty acid composition of the oils from several oil seed crops. Can J Bot, 1965,43:63-69.
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[3] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[4] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[5] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[6] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[7] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[8] LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798.
[9] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
[10] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[11] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[12] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[13] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[14] WEI Li-Juan, SHEN Shu-Lin, HUANG Xiao-Hu, MA Guo-Qiang, WANG Xi-Tong, YANG Yi-Ling, LI Huan-Dong, WANG Shu-Xian, ZHU Mei-Chen, TANG Zhang-Lin, LU Kun, LI Jia-Na, QU Cun-Min. Genome-wide association analysis reveals zinc-tolerant loci of rapeseed at germination stage [J]. Acta Agronomica Sinica, 2021, 47(2): 262-274.
[15] LI Qian, Nadil Shah, ZHOU Yuan-Wei, HOU Zhao-Ke, GONG Jian-Fang, LIU Jue, SHANG Zheng-Wei, ZHANG Lei, ZHAN Zong-Xiang, CHANG Hai-Bin, FU Ting-Dong, PIAO Zhong-Yun, ZHANG Chun-Yu. Breeding of a novel clubroot disease-resistant Brassica napus variety Huayouza 62R [J]. Acta Agronomica Sinica, 2021, 47(2): 210-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!